cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271960 G.f. A(x) satisfies: A(x)^2 = A( (x + 2*A(x)^2)^2 ).

Original entry on oeis.org

1, 2, 9, 50, 312, 2086, 14613, 105864, 786627, 5962110, 45914544, 358247214, 2825957294, 22499804332, 180573770279, 1459277489372, 11864714598122, 96985441764430, 796580710229999, 6570692234061404, 54408498662798180, 452104483291381134, 3768693666865385520, 31506775300298343840, 264103426399414754616, 2219265880819182687882, 18690831189839369444283, 157746446435747834724764, 1333944139058301773582424
Offset: 1

Views

Author

Paul D. Hanna, Apr 23 2016

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 9*x^3 + 50*x^4 + 312*x^5 + 2086*x^6 + 14613*x^7 + 105864*x^8 + 786627*x^9 + 5962110*x^10 + 45914544*x^11 + 358247214*x^12 +...
where A(x)^2 = A( (x + 2*A(x)^2)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 22*x^4 + 136*x^5 + 905*x^6 + 6320*x^7 + 45686*x^8 + 338928*x^9 + 2565688*x^10 + 19739244*x^11 + 153893122*x^12 +...
(x + 2*A(x)^2)^2 = x^2 + 4*x^3 + 20*x^4 + 120*x^5 + 784*x^6 + 5412*x^7 + 38808*x^8 + 286200*x^9 + 2156704*x^10 + 16533088*x^11 + 128521172*x^12 +...
sqrt(x*A(x)) = x + x^2 + 4*x^3 + 21*x^4 + 127*x^5 + 832*x^6 + 5746*x^7 + 41191*x^8 + 303602*x^9 + 2286359*x^10 + 17515640*x^11 + 136074960*x^12 + 1069490964*x^13 + 8488634979*x^14 + 67943128844*x^15 + 547784144486*x^16 +...
Let B(x) be the series reversion of g.f. A(x), so that A(B(x)) = x, then
B(x) = x - 2*x^2 - x^3 - x^5 - x^7 - 2*x^9 - 3*x^11 - 6*x^13 - 11*x^15 - 23*x^17 - 46*x^19 - 98*x^21 - 207*x^23 - 451*x^25 +...+ -A001190(n)*x^(2*n+1) +...
such that B(x) = x - 2*x^2 - x*G(x^2), where G(x) = x + (1/2)*(G(x)^2 + G(x^2)).
Let C(x) = series reversion of sqrt(x*A(x)), so that C(x)*A(C(x)) = x^2, then
A(C(x)) = F(x) = x + x^2 + 3*x^3 + 11*x^4 + 46*x^5 + 206*x^6 + 968*x^7 + 4706*x^8 + 23475*x^9 + 119473*x^10 +...+ A271959(n)*x^n +...
where F(x)^2 = F( x^2 + 2*F(x)^3 ).
SPECIFIC VALUES.
A(1/9) = 0.193716899378316704135816541113258730084910624425207...
where A(1/9)^2 = A( (1/9 + 2*A(1/9)^2)^2 ).
A(1/10) = 0.14546429517891287614768130046564115776024954490631...
where A(1/10)^2 = A( (1/10 + 2*A(1/10)^2)^2 ).
A(1/11) = 0.12312262826542819891757177602341377693863412904549...
where A(1/11)^2 = A( (1/11 + 2*A(1/11)^2)^2 ).
A(1/12) = 0.10787967285688466984977060963500355819842649026285...
where A(1/12)^2 = A( (1/12 + 2*A(1/12)^2)^2 ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x+x^2, X=x+x*O(x^n)); for(i=1, n, A = subst(A, x, (X + 2*A^2)^2 )^(1/2) ); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x - 2*x^2 - x*G(x^2)) = x, where G(x) = x + (1/2)*(G(x)^2 + G(x^2)) is the g.f. of the Wedderburn-Etherington numbers (A001190).
(2) A(x) = F( sqrt(x*A(x)) ) where F(x)^2 = F( x^2 + 2*F(x)^3 ) and F(x) is the g.f. of A271959.
a(n) ~ c * d^n / n^(3/2), where d = 8.9175668047902516038346068989... and c = 0.056993950617012713508863076... . - Vaclav Kotesovec, May 03 2016