A271973 Smallest number k such that gcd(s1, s2) = n, where s1 is the sum of the odd numbers and s2 is the sum of the even numbers in the Collatz (3x+1) trajectory of k.
1, 10, 9, 30, 65, 5, 74, 86, 368, 135, 970, 50, 95, 101, 1045, 178, 793, 7, 214, 196, 18, 423, 133, 200, 2572, 629, 621, 358, 700, 451, 3167, 1924, 3611, 1926, 662, 510, 6688, 437, 1525, 5072, 3724, 3161, 1034, 240, 5848, 2487, 704, 442, 19120, 1230, 5138, 3524
Offset: 1
Keywords
Examples
a(6) = 5 because the Collatz trajectory of 5 is 5 -> 16 -> 8 -> 4 -> 2 -> 1 with s1 = 5+1 = 6 and s2 = 16+8+4+2 = 30 => gcd(6,30) = 6.
Programs
-
Maple
nn:=10^8: for n from 1 to 60 do: ii:=0: for k from 1 to nn while(ii=0) do: kk:=1:m:=k:T[kk]:=k:it:=0: for i from 1 to nn while(m<>1) do: if irem(m,2)=0 then m:=m/2:kk:=kk+1:T[kk]:=m: else m:=3*m+1:kk:=kk+1:T[kk]:=m: fi: od: s1:=0:s2:=0: for j from 1 to kk do: if irem(T[j],2)=1 then s1:=s1+T[j]: else s2:=s2+T[j]: fi: od: g:=gcd(s1,s2): if g=n then ii:=1:printf("%d %d \n",n,k): else fi: od: od:
-
Mathematica
Table[k = 1; While[n != GCD[Total@ Select[#, OddQ], Total@ Select[#, EvenQ]] &@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, k, # > 1 &], k++]; k, {n, 52}] (* Michael De Vlieger, Jul 13 2016 *)