A271978 G_7(n), where G is the Goodstein function defined in A266201.
0, 173, 2454, 332147, 37665879, 774841151, 1162263921, 1937434592, 2749609302, 3486784574, 3486786855, 3487116548, 3524450280
Offset: 3
Keywords
Examples
Find G_7(7): G_1(7) = B_2(7)-1= B[2](2^2+2+1)-1 = 3^3+3+1-1 = 30; G_2(7) = B_3(G_1(7))-1 = B[3](3^3+3)-1 = 4^4+4-1 = 259; G_3(7) = B_4(G_2(7))-1 = 5^5+3-1 = 3127; G_4(7) = B_5(G_3(7))-1 = 6^6+2-1 = 46657; G_5(7) = B_6(G_4(7))-1 = 7^7+1-1 = 823543; G_6(7) = B_7(G_5(7))-1 = 8^8-1 = 16777215; G_7(7) = B_8(G_6(7))-1 = 7*9^7+7*9^6+7*9^5+7*9^4+7*9^3+7*9^2+7*9+7-1 = 37665879.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 3..16
- Wikipedia, Goodstein's theorem
Crossrefs
Programs
-
Python
from sympy.ntheory.factor_ import digits def bump(n,b): s=digits(n,b)[1:] l=len(s) return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i]) def A271978(n): if n==3: return 0 for i in range(2,9): n=bump(n,i)-1 return n # Pontus von Brömssen, Sep 25 2020
Extensions
a(9) corrected by Pontus von Brömssen, Sep 25 2020
Comments