A271994 The chalcogen sequence (a(n) = A018227(n)-2).
8, 16, 34, 52, 84, 116, 166, 216, 288, 360, 458, 556, 684, 812, 974, 1136, 1336, 1536, 1778, 2020, 2308, 2596, 2934, 3272, 3664, 4056, 4506, 4956, 5468, 5980, 6558, 7136, 7784, 8432, 9154, 9876, 10676, 11476, 12358, 13240, 14208, 15176, 16234, 17292, 18444
Offset: 2
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- Wikipedia, Chalcogen
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Mathematica
Table[(2 n^3 + 12 n^2 + 25 n + (-1)^n 3 (n + 2) - 30)/12, {n, 2, 43}] (* or *) Drop[#, 2] &@ CoefficientList[Series[2 x^2 (4 - 3 x^2 + x^4)/((1 - x)^4 (1 + x)^2), {x, 0, 43}], x] (* Michael De Vlieger, May 29 2016 *) LinearRecurrence[{2,1,-4,1,2,-1},{8,16,34,52,84,116},50] (* Harvey P. Dale, Sep 24 2022 *)
-
PARI
Vec(2*x^2*(4-3*x^2+x^4)/((1-x)^4*(1+x)^2) + O(x^50)) \\ Colin Barker, May 29 2016
Formula
From Colin Barker, May 29 2016: (Start)
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6) for n>7.
G.f.: 2*x^2*(4-3*x^2+x^4) / ((1-x)^4*(1+x)^2).
(End)
a(n) = (2*n^3 + 12*n^2 + 25*n + (-1)^n*3*(n + 2) - 30)/12. - Ilya Gutkovskiy, May 29 2016
Comments