cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271994 The chalcogen sequence (a(n) = A018227(n)-2).

Original entry on oeis.org

8, 16, 34, 52, 84, 116, 166, 216, 288, 360, 458, 556, 684, 812, 974, 1136, 1336, 1536, 1778, 2020, 2308, 2596, 2934, 3272, 3664, 4056, 4506, 4956, 5468, 5980, 6558, 7136, 7784, 8432, 9154, 9876, 10676, 11476, 12358, 13240, 14208, 15176, 16234, 17292, 18444
Offset: 2

Views

Author

Natan Arie Consigli, May 28 2016

Keywords

Comments

Terms up to 116 are the atomic numbers of the elements of group 16 in the periodic table. Those elements are also known as chalcogens.

Programs

  • Mathematica
    Table[(2 n^3 + 12 n^2 + 25 n + (-1)^n 3 (n + 2) - 30)/12, {n, 2, 43}] (* or *)
    Drop[#, 2] &@ CoefficientList[Series[2 x^2 (4 - 3 x^2 + x^4)/((1 - x)^4 (1 + x)^2), {x, 0, 43}], x] (* Michael De Vlieger, May 29 2016 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{8,16,34,52,84,116},50] (* Harvey P. Dale, Sep 24 2022 *)
  • PARI
    Vec(2*x^2*(4-3*x^2+x^4)/((1-x)^4*(1+x)^2) + O(x^50)) \\ Colin Barker, May 29 2016

Formula

From Colin Barker, May 29 2016: (Start)
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6) for n>7.
G.f.: 2*x^2*(4-3*x^2+x^4) / ((1-x)^4*(1+x)^2).
(End)
a(n) = (2*n^3 + 12*n^2 + 25*n + (-1)^n*3*(n + 2) - 30)/12. - Ilya Gutkovskiy, May 29 2016