A272024 Number of partitions of the sum of the divisors of n.
1, 3, 5, 15, 11, 77, 22, 176, 101, 385, 77, 3718, 135, 1575, 1575, 6842, 385, 31185, 627, 53174, 8349, 17977, 1575, 966467, 6842, 53174, 37338, 526823, 5604, 5392783, 8349, 1505499, 147273, 386155, 147273, 64112359, 26015, 966467, 526823, 56634173, 53174, 118114304, 75175, 26543660, 12132164, 5392783
Offset: 1
Keywords
Examples
For n = 9 the sum of the divisors of 9 is 1 + 3 + 9 = 13 and the number of partitions of 13 is A000041(13) = 101, so a(9) = 101. Note that one of the 101 partitions of 13 is [9, 3, 1] and it is also the list of divisors of 9 in decreasing order.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[PartitionsP@ DivisorSigma[1, n], {n, 46}] (* Michael De Vlieger, Apr 19 2016 *)
-
PARI
a(n) = numbpart(sigma(n)); \\ Michel Marcus, Apr 19 2016
Comments