A299773 a(n) is the index of the partition that contains the divisors of n in the list of colexicographically ordered partitions of the sum of the divisors of n.
1, 2, 3, 9, 7, 48, 15, 119, 72, 269, 56, 2740, 101, 1163, 1208, 5218, 297, 24319, 490, 42150, 6669, 14098, 1255, 792335, 5564, 42501, 30585, 432413, 4565, 4513067, 6842, 1251217, 122818, 317297, 124253, 54782479, 21637, 802541, 445414, 48590725, 44583
Offset: 1
Keywords
Examples
For n = 4 the sum of the divisors of 4 is 1 + 2 + 4 = 7. Then we have that, in list of colexicographically ordered partitions of 7, the divisors of 4 are in the 9th partition, so a(4) = 9 (see below): ------------------------------------------------------ k Diagram Partitions of 7 ------------------------------------------------------ _ _ _ _ _ _ _ 1 |_| | | | | | | [1, 1, 1, 1, 1, 1, 1] 2 |_ _| | | | | | [2, 1, 1, 1, 1, 1] 3 |_ _ _| | | | | [3, 1, 1, 1, 1] 4 |_ _| | | | | [2, 2, 1, 1, 1] 5 |_ _ _ _| | | | [4, 1, 1, 1] 6 |_ _ _| | | | [3, 2, 1, 1] 7 |_ _ _ _ _| | | [5, 1, 1] 8 |_ _| | | | [2, 2, 2, 1] 9 |_ _ _ _| | | [4, 2, 1] <---- Divisors of 4 10 |_ _ _| | | [3, 3, 1] 11 |_ _ _ _ _ _| | [6, 1] 12 |_ _ _| | | [3, 2, 2] 13 |_ _ _ _ _| | [5, 2] 14 |_ _ _ _| | [4, 3] 15 |_ _ _ _ _ _ _| [7] .
Links
- Amiram Eldar, Table of n, a(n) for n = 1..3200 (terms 1..700 from Andrew Howroyd)
Crossrefs
Programs
-
Mathematica
b[n_, k_] := b[n, k] = If[k < 1 || k > n, 0, If[n == k, 1, b[n, k + 1] + b[n - k, k]]]; PartIndex[v_] := Module[{s = 1, t = 0}, For[i = Length[v], i >= 1, i--, t += v[[i]]; s += b[t, If[i == 1, 1, v[[i - 1]]]] - b[t, v[[i]]]]; s]; a[n_] := PartIndex[Divisors[n]]; a /@ Range[1, 100] (* Jean-François Alcover, Sep 27 2019, after Andrew Howroyd *)
-
PARI
a(n)={my(d=divisors(n)); vecsearch(vecsort(partitions(vecsum(d))), d)} \\ Andrew Howroyd, Jul 15 2018
-
PARI
\\ here b(n,k) is A026807. b(n,k)=polcoeff(1/prod(i=k, n, 1-x^i + O(x*x^n)), n) PartIndex(v)={my(s=1,t=0); forstep(i=#v, 1, -1, t+=v[i]; s+=b(t, if(i==1, 1, v[i-1])) - b(t, v[i])); s} a(n)=PartIndex(divisors(n)); \\ Andrew Howroyd, Jul 15 2018
Extensions
Terms a(8) and beyond from Andrew Howroyd, Jul 15 2018
Comments