A272035 Numbers n such that the sum of the inverse of the exponents in the binary expansion of 2n is an integer.
0, 1, 38, 39, 2090, 2091, 16902, 16903, 18954, 18955, 18988, 18989, 131334, 131335, 133386, 133387, 133420, 133421, 148258, 148259, 150284, 150285, 524314, 524315, 524348, 524349, 526386, 526387, 541212, 541213, 543250, 543251, 543284, 543285, 655644, 655645, 657682
Offset: 1
Keywords
Examples
For n=39, 39_10=100111_2, and 1/1 + 1/2 + 1/3 + 1/6 = 2, an integer.
Links
- Peter Kagey, Table of n, a(n) for n = 1..450 (All terms less than 2^30)
Programs
-
Mathematica
Select[Range[2^20], IntegerQ@ Total[1/Flatten@ Position[Reverse@ IntegerDigits[#, 2], 1]] &] (* Michael De Vlieger, Apr 18 2016 *)
-
PARI
isok(n) = {my(b = Vecrev(binary(n))); denominator(sum(k=1, #b, b[k]/k)) == 1;}
Comments