cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A271653 Primes of the form 2*prime(2k) - prime(k).

Original entry on oeis.org

11, 31, 47, 61, 113, 127, 179, 241, 307, 419, 433, 449, 491, 853, 881, 1063, 1153, 1201, 1289, 1487, 1823, 1997, 2011, 2027, 2333, 2441, 2459, 2647, 2851, 2927, 3041, 3449, 3491, 3853, 4057, 4241, 4259, 4397, 4423, 4679, 4721, 5003, 5179, 5233, 5569, 5653, 5867, 6397, 6481, 6661
Offset: 1

Views

Author

Andres Cicuttin, Apr 11 2016

Keywords

Examples

			For n=1, 2*prime(2*2)-prime(2) = 2*7-3 = 11 is prime when k=2.
For n=2, 2*prime(2*4)-prime(4) = 2*19-7 = 31 is prime when k=4.
		

Crossrefs

Cf. A272042.

Programs

  • Magma
    [a: n in [0..400] | IsPrime(a) where a is 2*NthPrime(2*n) - NthPrime(n)]; // Vincenzo Librandi, Apr 15 2016
  • Maple
    A271653:=n->`if`(isprime(2*ithprime(2*n)-ithprime(n)), 2*ithprime(2*n)-ithprime(n), NULL): seq(A271653(n), n=1..600); # Wesley Ivan Hurt, Apr 17 2016
  • Mathematica
    Select[Table[2*Prime[2 k] - Prime[k], {k, 0, 100}], PrimeQ]
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(p=2*prime(2*n)-prime(n)), print1(p, ", "))); \\ Altug Alkan, Apr 13 2016
    
Showing 1-1 of 1 results.