cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A272060 Numbers k such that sigma((k-1)/2) + tau((k-1)/2) is prime.

Original entry on oeis.org

3, 5, 17, 257, 325, 1025, 65537, 82945, 202501, 250001, 2829125, 7496645, 10240001, 13675205, 16000001, 27060805, 48469445, 71402501, 133448705, 150062501, 156250001, 172186885, 182250001, 343064485, 354117125, 453519617, 467943425, 1235663105
Offset: 1

Views

Author

Jaroslav Krizek, Apr 19 2016

Keywords

Comments

Numbers k such that A000203((k-1)/2) + A000005((k-1)/2) is a prime q.
Corresponding values of primes q are in A055813.
Prime terms are in A272061.
The first 5 known Fermat primes from A019434 are in this sequence.

Examples

			sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..1000000] | IsPrime(NumberOfDivisors((n-1) div 2) + SumOfDivisors((n-1) div 2)) and (n-1) mod 2 eq 0];
    
  • Mathematica
    Select[Range[3, 10^7, 2], PrimeQ[DivisorSigma[1, #] + DivisorSigma[0, #]] &[(# - 1)/2] &] (* Michael De Vlieger, Apr 20 2016 *)
  • PARI
    isok(n) = isprime(sigma((n-1)/2) + numdiv((n-1)/2));
    lista(nn) = forstep (n=3, nn, 2, if (isok(n), print1(n, ", "))); \\ Michel Marcus, Apr 19 2016
    
  • PARI
    is(n)=my(f=factor(n\2)); n>2 && isprime(sigma(f)+numdiv(f)) && isprime(n) \\ Charles R Greathouse IV, Apr 29 2016

Formula

a(n) = 2*A064205(n) + 1.

A358342 Lesser of twin primes p such that sigma((p-1)/2) + tau((p-1)/2) is a prime.

Original entry on oeis.org

3, 5, 17, 65537, 1927561217, 6015902625062501, 12370388895062501, 835920078368222501, 6448645485213008897, 50973659693056000001, 54332889713542767617, 64304984013657011717, 112112769248058062501, 147337258721536000001
Offset: 1

Views

Author

Jaroslav Krizek, Nov 10 2022

Keywords

Comments

Lesser of twin primes p such that A000203((p-1)/2) + A000005((p-1)/2) is a prime q.
The first 4 terms are Fermat primes from A019434.
Corresponding values of primes q: 2, 5, 19, 65551, 2248681529, ...
Subsequence of A272060 and A272061.
Lesser of twin primes of the form 2*m+1 with m a term of A064205.
There are no other terms <= 10^14.
All the terms above 3 are in A145824. - Amiram Eldar, Jan 05 2023

Examples

			17 and 19 are twin primes; sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
		

Crossrefs

Intersection of A001359 and A272061.
Cf. A000005 (tau), A000203 (sigma), A019434, A064205, A145824, A272060.

Programs

  • Magma
    [n: n in [3..10^7] | IsPrime(n) and IsPrime(n+2) and IsPrime(&+Divisors((n-1) div 2) + #Divisors((n-1) div 2))]
    
  • Mathematica
    Join[{3}, Select[4*Range[25000]^2 + 1, PrimeQ[#] && PrimeQ[# + 2] && PrimeQ[DivisorSigma[1, (# - 1)/2] + DivisorSigma[0, (# - 1)/2]] &]]
    (* or *)
    A272061 = Cases[Import["https://oeis.org/A272061/b272061.txt", "Table"], {, }][[;; , 2]]; Select[A272061, PrimeQ[# + 2] &] (* Amiram Eldar, Jan 05 2023 *)
  • PARI
    isok(p) = if (isprime(p) && isprime(p+2), my(f=factor((p-1)/2)); isprime(sigma(f)+numdiv(f))); \\ Michel Marcus, Nov 23 2022
Showing 1-2 of 2 results.