A272077 Primes of the form abs(7*k^2 - 371*k + 4871) in order of increasing nonnegative values of k.
4871, 4507, 4157, 3821, 3499, 3191, 2897, 2617, 2351, 2099, 1861, 1637, 1427, 1231, 1049, 881, 727, 587, 461, 349, 251, 167, 97, 41, 29, 43, 43, 29, 41, 97, 167, 251, 349, 461, 587, 727, 881, 1049, 1231, 1427, 1637, 1861, 2099, 2351, 2617, 2897, 3191
Offset: 1
Keywords
Examples
4157 is in this sequence since 7*2^2 - 371*2 + 4871 = 28-742-4871 = 4157 is prime.
Links
- Robert Price, Table of n, a(n) for n = 1..3530
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomials
Crossrefs
Programs
-
GAP
Filtered(List([0..10^2],n->7*n^2-371*n+4871),IsPrime); # Muniru A Asiru, Feb 04 2018
-
Maple
select(isprime, [seq(7*n^2-371*n+4871, n=0..10^2)]); # Muniru A Asiru, Feb 04 2018
-
Mathematica
n = Range[0, 100]; Select[Abs[7n^2 - 371n + 4871], PrimeQ[#] &]
-
PARI
lista(nn) = for(n=0, nn, if(ispseudoprime(p=abs(7*n^2-371*n+4871)), print1(p, ", "))); \\ Altug Alkan, Apr 19 2016
Comments