A272078 Numbers k such that k^2 + 1 is product of 3 distinct primes.
13, 17, 21, 23, 27, 31, 33, 37, 53, 55, 63, 67, 72, 75, 77, 81, 87, 89, 91, 97, 98, 103, 105, 109, 111, 112, 113, 115, 119, 122, 125, 127, 128, 129, 135, 137, 138, 142, 147, 148, 149, 151, 153, 155, 161, 162, 163, 167, 172, 174, 179, 185, 189, 192, 197, 200, 208
Offset: 1
Keywords
Examples
13 appears in the list because 13^2 + 1 = 170 = 2 * 5 * 17. 21 appears in the list because 21^2 + 1 = 442 = 2 * 13 * 17.
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
A272078 = {}; Do[ k = Last /@ FactorInteger[n^2 + 1]; If[k == {1, 1, 1}, AppendTo[A272078, n]], {n, 1000}]; A272078 Select[Range[1000], Last /@ FactorInteger[#^2 + 1] == {1, 1, 1} &]
-
PARI
isok(k) = my(x=k^2+1); (omega(x)==3) && (bigomega(x)==3); \\ Michel Marcus, Mar 11 2020