cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272102 Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the first kind.

Original entry on oeis.org

1, 0, 1, 0, -4, 9, 0, 16, -180, 225, 0, -64, 3024, -12600, 11025, 0, 256, -48960, 529200, -1323000, 893025, 0, -1024, 785664, -20275200, 110602800, -196465500, 108056025, 0, 4096, -12579840, 749548800, -8072064000, 28605376800, -39332393100, 18261468225
Offset: 1

Views

Author

Francesco Franco, Apr 23 2016

Keywords

Comments

Table has only rows for odd h because all coefficients for even h are zero:
===|==========================================================================
h\s| 0 1 2 3 4 5 6
---|--------------------------------------------------------------------------
1 | 1
3 | 0 1
5 | 0 -4 9
7 | 0 16 -180 225
9 | 0 -64 3024 -12600 11025
11 | 0 256 -48960 529200 -1323000 893025
13 | 0 -1024 785664 -20275200 110602800 -196465500 108056025
15 | 0 4096 -12579840 749548800 -8072064000 28605376800 39332393100
17 | 0 -16384 201314304 -27298252800 553339987200 -3514374864000 9125115199200
...
Conjecture:
If t(h,s) is any term of the previous table after the first column (s>0), then:
t(h,s) = -( (2*s)^2*t(h-2,s) - (2*s-1)^2*t(h-2,s-1) ), with t(1,0) = 1, t(h,0) = 0 for h>1 and t(h,s) = 0 for odd h = 1..2*s-1. Some example:
t(11,3) = -((2*3)^2*t(9,5) - (2*3-1)^2*t(9,2)) = -(36*(-12600) - 25*3024) = 529200;
t(17,5) = -((2*5)^2*t(15,5) - (2*5-1)^2*t(15,4)) = -(100*(28605376800) - 81*(-8072064000)) = -351437486400.
Also:
t(h,1) = (-1)^(h/2+1/2)*A000302(h/2-3/2) for h>1;
t(h,2) = (-1)^(h/2-1/2)*(16*t(h-2,2)+9*2^(h-5)) for h>3.

Examples

			F(m,phi) = phi + m*phi^3/3! + (-4*m+9*m^2)*phi^5/5! + (16*m-180*m^2+225*m^3)*phi^7/7! + (-64*m+3024*m^2-12600*m^3+11025*m^4)*phi^9/9! + ...
so the first row (order phi^1) is a(1,1)=1 for the coefficient of phi,
the second row (order phi^3) is a(2,0)=0 for the missing coefficient of m^0*phi^3, and a(2,1)=-1 for the coefficient of m^1*phi^3/3!.
		

Crossrefs

Cf. A120362.

Programs

  • Maple
    an := proc(m, n, s) local f: f := coeftayl(EllipticF(sin(phi), m^(1/2)), phi=0, n); coeftayl(f*n!, m=0, s) ; end: nmax := 28 ; for n from 1 to nmax by 2 do for s from 0 to (n-1)/2 do printf("%d, ", an(m, n, s)) ; od ; od;
  • Mathematica
    a[1, 0] = 1; a[n_, s_] := SeriesCoefficient[EllipticF[phi, m], {phi, 0, n}, {m, 0, s}]*n!; Table[a[n, s], {n, 1, 17, 2}, {s, 0, n/2}] // Flatten

Formula

F(m,phi) = Int_{theta=0..phi} 1/sqrt(1-m*sin^2 theta) d theta.
F(m,phi) = Sum_{n=1,3,5,7,9,...} ( Sum_{s=0..(n-1)/2} a((n-1)/2,s) * m^s)*phi^n/n!.

Extensions

Missing 0 added by Bruno Berselli, Apr 29 2016