cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272124 a(n) = 12*n^4 + 16*n^3 + 10*n^2 + 4*n + 1.

Original entry on oeis.org

1, 43, 369, 1507, 4273, 9771, 19393, 34819, 58017, 91243, 137041, 198243, 277969, 379627, 506913, 663811, 854593, 1083819, 1356337, 1677283, 2052081, 2486443, 2986369, 3558147, 4208353, 4943851, 5771793, 6699619, 7735057, 8886123, 10161121, 11568643
Offset: 0

Views

Author

Vincenzo Librandi, Apr 21 2016

Keywords

Crossrefs

Programs

  • Magma
    [12*n^4+16*n^3+10*n^2+4*n+1: n in [0..50]];
    
  • Maple
    A272124:=n->(12*n^4 + 16*n^3 + 10*n^2 + 4*n + 1): seq(A272124(n), n=0..60); # Wesley Ivan Hurt, Apr 22 2016
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 43, 369, 1507, 4273}, 50]
    CoefficientList[Series[(1 + 38*x + 164*x^2 + 82*x^3 + 3*x^4)/(1 - x)^5, {x, 0, 30}], x] (* Wesley Ivan Hurt, Apr 22 2016 *)
  • PARI
    vector(100, n, n--; 12*n^4+16*n^3+10*n^2+4*n+1) \\ Altug Alkan, Apr 22 2016

Formula

O.g.f.: (1+38*x+164*x^2+82*x^3+3*x^4)/(1-x)^5.
E.g.f.: (1+42*x+142*x^2+88*x^3+12*x^4)*exp(x).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
a(n) mod 4 = a(n) mod 8 = A010684(n). - Wesley Ivan Hurt, Apr 22 2016