A272199 Expansion of 1/(1 - 2*x + 13*x^2).
1, 2, -9, -44, 29, 630, 883, -6424, -24327, 34858, 385967, 318780, -4380011, -12904162, 31131819, 230017744, 55321841, -2879586990, -6478357913, 24477915044, 133174482957, -51863929658, -1834996137757, -2995761189960, 17863427410921, 74671750291322
Offset: 0
Examples
a(2) = c(13^2) = A000727(2*A091030(2)) = A000727(28) = -9.
References
- Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 130, 138 - 139.
Links
Programs
-
Magma
I:=[1,2]; [n le 2 select I[n] else 2*Self(n-1)-13*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 25 2016
-
Mathematica
CoefficientList[Series[1/(1 - 2 x + 13 x^2), {x, 0, 25}], x] (* Michael De Vlieger, Apr 27 2016 *) LinearRecurrence[{2, -13}, {1, 2}, 30] (* Vincenzo Librandi, Nov 25 2016 *)
-
PARI
Vec(1/(1-2*x+13*x^2) + O(x^99)) \\ Altug Alkan, Apr 28 2016
Formula
G.f.: 1/(1 - 2*x + 13*x^2).
a(n) = 2*a(n-1) - 13*a(n-2), a(-1) = 0, a(0) = 1.
a(n) = sqrt(13)^n * S(n, 2/sqrt(13)), n >= 0, with Chebyshev's S polynomials (A049310).
a(n) = (Ap^(n+1) - Am^(n+1))/(Ap - Am) with Ap:= 1 + 2*sqrt(3)*i and Am = 1 - 2*sqrt(3)*i, (Binet - de Moivre formula), where i is the imaginary unit.
E.g.f.: (sqrt(3)*sin(2*sqrt(3)*x) + 6*cos(2*sqrt(3)*x))*exp(x)/6. - Ilya Gutkovskiy, Apr 27 2016
Comments