cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A272216 Exponent of the power of 2 that divides A272215(n).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 2, 1, 5, 3, 2, 1, 3, 2, 2, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 1, 3, 1, 2, 1, 6, 1, 4, 1, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 4, 1, 2, 6, 3, 1, 2, 2, 5, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 1, 2, 1, 4, 1, 2, 1, 3, 1, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 1, 3, 1, 3, 1, 5, 1
Offset: 1

Views

Author

David A. Corneth, Apr 22 2016

Keywords

Examples

			As A272215(1336) = 3136 is of the form 2^6 * k where k is an odd integer, a(1336) = 6.
		

Crossrefs

Cf. A272215.

A343750 Let S be the set of all numbers that can be obtained by permuting the digits of n (leading zeros can be omitted). Then a(n) is that element of S with the smallest number of divisors. In case of a tie, choose the smallest.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 21, 13, 41, 15, 61, 17, 81, 19, 2, 21, 22, 23, 24, 25, 26, 27, 82, 29, 3, 13, 23, 33, 43, 53, 63, 37, 83, 39, 4, 41, 24, 43, 44, 45, 46, 47, 48, 49, 5, 15, 25, 53, 45, 55, 65, 57, 58, 59, 6, 61, 26, 63, 46, 65
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 27 2021

Keywords

Comments

a(x0..0) = x, a(x..x) = x..x, x from {1,...,9}.

Examples

			n = 125, S = {125, 152, 215, 251, 512, 521}. The elements 251 and 521 have the smallest number of divisors which equals 2. The smallest from elements 251 and 521 is 251, thus a(125) = 251.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{perm  = FromDigits /@ Permutations[IntegerDigits[n]], d}, d = DivisorSigma[0, perm]; Min @ perm[[Position[d, Min[d]] // Flatten]]]; Array[a, 65] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    a(n) = my(d=digits(n), nb=#d, v=vector(nb!, k, fromdigits(vector(#d, i, d[numtoperm(nb, k)[i]]))), w=apply(numdiv, v)); vecmin(select(x->(numdiv(x)==vecmin(w)), v)); \\ Michel Marcus, Jan 24 2025

A380391 Numbers k such that A343750(k) != k.

Original entry on oeis.org

10, 12, 14, 16, 18, 20, 28, 30, 31, 32, 34, 35, 36, 38, 40, 42, 50, 51, 52, 54, 56, 60, 62, 64, 68, 70, 71, 72, 73, 74, 75, 76, 78, 80, 84, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 114, 115, 116, 118, 119, 120
Offset: 1

Views

Author

Ctibor O. Zizka, Jan 23 2025

Keywords

Examples

			k = 13: A343750(13) = 13, thus k = 13 is not in the sequence.
k = 14: A343750(14) = 41, thus k = 14 is a term.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := Module[{perm = FromDigits /@ Permutations[IntegerDigits[k]], d}, d = DivisorSigma[0, perm]; Min@ perm[[Position[d, Min[d]] // Flatten]] != k]; Select[Range[120], q] (* Amiram Eldar, Jan 24 2025 *)
Showing 1-3 of 3 results.