cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272263 a(n) = numerator of A000032(n) - 1/2^n.

Original entry on oeis.org

1, 1, 11, 31, 111, 351, 1151, 3711, 12031, 38911, 125951, 407551, 1318911, 4268031, 13811711, 44695551, 144637951, 468058111, 1514668031, 4901568511, 15861809151, 51329892351, 166107021311, 537533612031, 1739495309311, 5629125066751, 18216231370751
Offset: 0

Views

Author

Paul Curtz, Apr 24 2016

Keywords

Comments

A000032(n), Lucas numbers, and 1/2^n are autosequences of the second kind.
Then a(n)/2^n is also an autosequence of the second kind.
Their corresponding autosequences of the first kind are A000045(n) and n/2^n, the Oresme numbers.
Difference table of A000032(n) - 1/2^n:
1, 1/2, 11/4, 31/8, 111/16, 351/32, 1151/64, ...
9/4, 9/8, 49/16, 129/32, 449/64, 1409/128, ...
31/16, 31/32, 191/64, 511/128, 1791/256, ...
129/64, 129/128, 769/256, ...
511/256, 511/256, ...
2049/1024, ... .
The first upper diagonal is A140323(n)/A004171(n). The main diagonal is the double, i.e. A140323(n)/A000302(n). The inverse binomial transform is the signed sequence.
Quintisections from a(2):
11, 31, 111, 351, 1151,
3711, 12031, 38911, 125951, 407551,
1318911, 4268031, 13811711, 44695551, 144637951,
etc.

Examples

			Numerators of a(0) =2-1=1, a(1)=1-1/2=1/2, a(2)=3-1/4=11/4, a(3)=4-1/8=31/8, ... .
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2*x + 6*x^2)/((1 - x)*(1 - 2*x - 4*x^2)), {x, 0, 30}], x] (* Robert Price, Apr 24 2016 *)
    Table[Numerator[LucasL@ n - 1/2^n], {n, 0, 26}] (* Michael De Vlieger, Apr 24 2016 *)
  • PARI
    Vec((1-2*x+6*x^2)/((1-x)*(1-2*x-4*x^2)) + O(x^50)) \\ Colin Barker, Apr 24 2016

Formula

a(n) = a(n-1) + 10*A085449(n), for n>0, a(0)=1.
a(n) = A087131(n) - 1.
From Colin Barker, Apr 24 2016: (Start)
a(n) = (-1+(1-sqrt(5))^n+(1+sqrt(5))^n).
a(n) = 3*a(n-1)+2*a(n-2)-4*a(n-3) for n>2.
G.f.: (1-2*x+6*x^2) / ((1-x)*(1-2*x-4*x^2)).
(End)