cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272297 a(n) = n^4 + 64.

Original entry on oeis.org

64, 65, 80, 145, 320, 689, 1360, 2465, 4160, 6625, 10064, 14705, 20800, 28625, 38480, 50689, 65600, 83585, 105040, 130385, 160064, 194545, 234320, 279905, 331840, 390689, 457040, 531505, 614720, 707345, 810064, 923585, 1048640, 1185985, 1336400, 1500689, 1679680, 1874225, 2085200
Offset: 0

Views

Author

Bruno Berselli, Apr 25 2016

Keywords

Comments

This is the case k=2 of Sophie Germain's Identity n^4+(2*k^2)^2 = ((n-k)^2+k^2)*((n+k)^2+k^2).

Crossrefs

Cf. A005917.
Subsequence of A227855.
Cf. A000583 (k=0), A057781 (k=1), A272298 (k=3).

Programs

  • Magma
    [n^4+64: n in [0..40]];
    
  • Mathematica
    Table[n^4 + 64, {n, 0, 40}]
  • Maxima
    makelist(n^4+64, n, 0, 40);
    
  • PARI
    vector(40, n, n--; n^4+64)
    
  • Python
    [n**4+64 for n in range(40)]
    
  • Python
    for n in range(0,10**5):print(n**4+64) # Soumil Mandal, Apr 30 2016
  • Sage
    [n^4+64 for n in (0..40)]
    

Formula

O.g.f.: (64 - 255*x + 395*x^2 - 245*x^3 + 65*x^4)/(1 - x)^5.
E.g.f.: (64 + x + 7*x^2 + 6*x^3 + x^4)*exp(x).
a(n) = (n^2 - 8)^2 + (4*n)^2.