A272339 First differences of 1/p(n), reciprocal of the number p(n) of unrestricted partitions of n (negated numerator).
0, 1, 1, 2, 2, 4, 4, 7, 2, 1, 1, 3, 24, 34, 41, 5, 2, 8, 3, 137, 5, 35, 253, 64, 383, 239, 41, 177, 7, 1039, 619, 137, 26, 2167, 2573, 3094, 3660, 398, 94, 293, 115, 71, 917, 11914, 13959, 4106, 4799, 3217, 26252, 2791, 3247, 1262, 2302, 8032, 1329, 75547, 87331, 50533, 53, 134647
Offset: 0
Examples
Fractions begin: 0, -1/2, -1/6, -2/15, -2/35, -4/77, -4/165, -7/330, ...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
-(Table[1/PartitionsP[n], {n, 0, 60}] // Differences) // Numerator
-
PARI
a(n) = -numerator(1/numbpart(n+1) - 1/numbpart(n)); \\ Michel Marcus, Nov 03 2020
Formula
a(n) / A272340(n) = 1/p(n+1) - 1/p(n).