cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272339 First differences of 1/p(n), reciprocal of the number p(n) of unrestricted partitions of n (negated numerator).

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 4, 7, 2, 1, 1, 3, 24, 34, 41, 5, 2, 8, 3, 137, 5, 35, 253, 64, 383, 239, 41, 177, 7, 1039, 619, 137, 26, 2167, 2573, 3094, 3660, 398, 94, 293, 115, 71, 917, 11914, 13959, 4106, 4799, 3217, 26252, 2791, 3247, 1262, 2302, 8032, 1329, 75547, 87331, 50533, 53, 134647
Offset: 0

Views

Author

Jean-François Alcover, Apr 26 2016

Keywords

Examples

			Fractions begin: 0, -1/2, -1/6, -2/15, -2/35, -4/77, -4/165, -7/330, ...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Cf. A000041, A084911, A272340 (denominators).

Programs

  • Mathematica
    -(Table[1/PartitionsP[n], {n, 0, 60}] // Differences) // Numerator
  • PARI
    a(n) = -numerator(1/numbpart(n+1) - 1/numbpart(n)); \\ Michel Marcus, Nov 03 2020

Formula

a(n) / A272340(n) = 1/p(n+1) - 1/p(n).
Product_{p prime} (1 - Sum_{n>=1} (a(n)/A272340(n))/p^n) = A272169. - Amiram Eldar, Nov 03 2020