cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084911 Decimal expansion of linear asymptotic constant B in Sum_{k=1..n} 1/A000688(k) = ~B*n + ...

Original entry on oeis.org

7, 5, 2, 0, 1, 0, 7, 4, 2, 3, 7, 7, 0, 2, 9, 1, 6, 1, 5, 2, 0, 6, 3, 6, 0, 7, 7, 4, 5, 5, 4, 3, 2, 5, 7, 6, 5, 6, 0, 7, 1, 8, 1, 4, 6, 9, 5, 9, 1, 2, 8, 5, 2, 6, 6, 9, 6, 3, 9, 9, 7, 9, 8, 3, 2, 6, 7, 2, 3, 5, 0, 5, 6, 8, 4, 6, 4, 7, 9, 7, 3, 7, 8, 6, 3, 9, 4, 7, 3, 6, 3, 7, 8, 0, 8, 6, 5, 4, 3, 7, 1, 0, 1, 3, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jun 11 2003

Keywords

Examples

			0.7520107423...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Programs

  • Mathematica
    digits = 10; m0 (* initial number of primes *) = 10^6; dm = 2*10^5; PP = PartitionsP; DP[n_] := DP[n] = (1/PP[n - 1] - 1 /PP[n]) // N[#, digits + 5]&; pmax = Prime[1000];
    nmax[p_ /; p <= pmax] := nmax[p] = Module[{n}, For[n = 2, n < 1000, n++, If[Abs[1/PP[n - 1] - 1 /PP[n]]/p^n < 10^-100, Return[n]]]]; nmax[p_ /; p > pmax] := nmax[pmax];
    s[p_] := Sum[DP[n]/p^n, {n, 2, nmax[p]}] ;
    f[m_] := f[m] = Product[1 - s[p], {p, Prime[Range[m]]}]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 2][[1]] != RealDigits[f[m - dm], 10, digits + 2][[1]], m = m + dm; Print[m, " ", RealDigits[f[m]]]];
    A0 = f[m]; RealDigits[A0, 10, digits][[1]] (* Jean-François Alcover, Apr 29 2016 *)
  • PARI
    default(realprecision, 120); default(parisize, 10000000);
    prodeulerrat((1-1/p)*(1 + sum(i = 1, 512, 1/(numbpart(i)*p^i)))) \\ Amiram Eldar, Mar 08 2024

Formula

Equals Product_{p prime} (1-Sum_{k >= 2} (1/P(k-1)-1/P(k))/p^k), where P(k) is the unrestricted partition function. - Jean-François Alcover, Apr 29 2016, [typo corrected by Vaclav Kotesovec, Mar 05 2024]
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} 1/A000688(k). - Amiram Eldar, Oct 16 2020

Extensions

Data corrected by Jean-François Alcover, Apr 29 2016
a(10) from Vaclav Kotesovec, Mar 07 2024
More terms from Amiram Eldar, Mar 08 2024

A272340 First differences of 1/p(n), reciprocal of the number p(n) of unrestricted partitions of n (denominator).

Original entry on oeis.org

1, 2, 6, 15, 35, 77, 165, 330, 165, 105, 168, 616, 7777, 13635, 23760, 3696, 2079, 10395, 5390, 307230, 15048, 132264, 1257510, 395325, 3083850, 2384844, 523740, 2797795, 140270, 25582260, 19171284, 5193078, 1227303, 124860330, 183209730, 267551691, 388968349, 51171505, 14750505
Offset: 0

Views

Author

Jean-François Alcover, Apr 26 2016

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Cf. A000041, A272339 (numerators).

Programs

  • Mathematica
    Table[1/PartitionsP[n], {n, 0, 60}] // Differences // Denominator
  • PARI
    a(n) = denominator(1/numbpart(n+1) - 1/numbpart(n)); \\ Michel Marcus, Nov 03 2020

Formula

A272339(n) / a(n) = 1/p(n+1) - 1/p(n).
Showing 1-2 of 2 results.