A272169 Duplicate of A084911.
7, 5, 2, 0, 1, 0, 7, 4, 2, 3
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Fractions begin: 0, -1/2, -1/6, -2/15, -2/35, -4/77, -4/165, -7/330, ...
-(Table[1/PartitionsP[n], {n, 0, 60}] // Differences) // Numerator
a(n) = -numerator(1/numbpart(n+1) - 1/numbpart(n)); \\ Michel Marcus, Nov 03 2020
Fractions begin with 1, 2, 3, 7/2, 9/2, 11/2, 13/2, 41/6, 22/3, 25/3, 28/3, 59/6, ...
Numerator[Accumulate[Table[1/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
f(n) = vecprod(apply(numbpart, factor(n)[, 2])); list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / f(k); print1(numerator(s), ", "))};
Fractions begin with 1, 0, 1, 1/2, 3/2, 1/2, 3/2, 7/6, 5/3, 2/3, 5/3, 7/6, ...
Numerator[Accumulate[Table[(-1)^(n+1)/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
f(n) = vecprod(apply(numbpart, factor(n)[, 2])); list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / f(k); print1(numerator(s), ", "))};
a(8) = 1 since q(8) = 2*3 with 2 = q(3) and 3 = q(5). a(23) = 13 since q(23) = 2^3*13 with 13 not dividing q(1)*q(2)*...*q(22), but 2 divides q(3) = 2.
f[n_]:=FactorInteger[PartitionsQ[n]] pp[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}] Do[If[PartitionsQ[n]<2,Goto[cc]];Do[Do[If[Mod[PartitionsQ[i],Part[pp[n],k]]==0,Goto[aa]],{i,1,n-1}];Print[n," ",Part[pp[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[pp[n]]}];Label[cc];Print[n," ",1];Label[bb];Continue,{n,1,60}]
Comments