A272376 Twin primes both of which are the sum of three positive cubes.
2267, 2269, 3527, 3529, 10331, 10333, 14867, 14869, 17207, 17209, 18521, 18523, 18917, 18919, 20231, 20233, 20357, 20359, 25577, 25579, 27791, 27793, 28547, 28549, 31247, 31249, 35279, 35281, 36899, 36901, 40697, 40699, 44279, 44281, 48779, 48781, 51479, 51481
Offset: 1
Keywords
Examples
3527 and 3529 are terms since 3527=3^3+5^3+15^3 and 3529=1^3+11^3+13^3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
cu[n_] := {}!=Quiet@ IntegerPartitions[n,{3},Range[n^(1/3)]^3, 1]; Flatten@ Rest@ Reap@ Do[If[ PrimeQ[p+2] && cu[p] && cu[p+2], Sow[{p, p+2}]], {p, Prime@ Range@ 10000}] (* Giovanni Resta, Apr 28 2016 *)
-
PARI
list(lim)=my(v=List(), k, t); lim\=1; for(x=1, sqrtnint(lim-2, 3), for(y=1, min(sqrtnint(lim-x^3-1, 3), x), k=x^3+y^3; for(z=1, min(sqrtnint(lim-k, 3), y), if(isprime(t=k+z^3), listput(v, t))))); v=Set(v); for(i=2,#v-1,if(v[i]!=v[i-1]+2 && v[i]!=v[i+1]-2, v[i]=0)); v=Set(v); v[3..#v] \\ Charles R Greathouse IV, Apr 29 2016