A272388 Longest side of Heronian tetrahedron.
117, 160, 203, 225, 234, 318, 319, 319, 320, 351, 406, 429, 450, 468, 468, 480, 585, 595, 595, 595, 609, 612, 636, 638, 638, 640, 671, 675, 680, 680, 697, 697, 702, 741, 780, 800, 812, 819, 858, 884, 884, 888, 900, 925, 935, 936, 936, 954, 957, 957, 960, 990, 990
Offset: 1
Keywords
Examples
The following are examples of Heronian tetrahedra. dAB, dAC, dBC, dCD, dBD, dAD, SABC, SABD, SACD, SBCD, Volume 117, 84, 51, 52, 53, 80, 1890, 1800, 2016, 1170, 18144 160, 153, 25, 39, 56, 120, 1872, 2688, 1404, 420, 8064 203, 195, 148, 203, 195, 148, 13650, 13650, 13650, 13650, 611520 225, 200, 65, 119, 156, 87, 6300, 4914, 2436, 3570, 35280 234, 168, 102, 104, 106, 160, 7560, 7200, 8064, 4680, 145152 318, 221, 203, 42, 175, 221, 22260, 18564, 4620, 2940, 206976 319, 318, 175, 175, 210, 221, 26796, 23100, 18564, 14700, 1034880 319, 318, 175, 203, 252, 221, 26796, 27720, 22260, 17640, 1241856 320, 306, 50, 78, 112, 240, 7488, 10752, 5616, 1680, 64512 351, 252, 153, 156, 159, 240, 17010, 16200, 18144, 10530, 489888 where dPQ is the distance between vertices P and Q and SPQR is the area of triangle PQR.
Links
- R. H. Buchholz, Perfect Pyramids, Bull. Austral. Math. Soc. 45, 353-368, 1992.
- Susan H. Marshall and Alexander R. Perlis, Heronian Tetrahedra Are Lattice Tetrahedra, American Mathematical Monthly 120:2 (2013), 140-149.
- Ivars Peterson, Perfect pyramids.
- Eric Weisstein's World of Mathematics, Heronian Tetrahedron.
Programs
-
Mathematica
aMax=360(*WARNING:takes a long time*); heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&; cayley=1/24Sqrt[2Det[{ {0,1,1,1,1}, {1,0,#1^2,#2^2,#6^2}, {1,#1^2,0,#3^2,#5^2}, {1,#2^2,#3^2,0,#4^2}, {1,#6^2,#5^2,#4^2,0} }]]&; Do[ S1=heron[a,b,c]; If[S1//IntegerQ//Not,Continue[]]; Do[ S2=heron[a,e,f]; If[S2//IntegerQ//Not,Continue[]]; Do[ If[b==e&&c>f||b==f&&c>e,Continue[]]; S3=heron[b,d,f]; If[S3//IntegerQ//Not,Continue[]]; S4=heron[c,d,e]; If[S4//IntegerQ//Not,Continue[]]; V=cayley[a,b,c,d,e,f]; If[V//IntegerQ//Not,Continue[]]; If[V==0,Continue[]]; a//Sow(*{a,b,c,d,e,f,S1,S2,S3,S4,V}//Sow*); ,{d,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1-S2)/a)^2]//Ceiling,Min[a,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1+S2)/a)^2]]}]; ,{e,a-b+1,b},{f,a-e+1,b}]; ,{a,117,aMax},{b,a/2//Ceiling,a},{c,a-b+1,b}]//Reap//Last//Last
Extensions
a(11)-a(53) from Giovanni Resta, May 20 2016
Comments