cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272388 Longest side of Heronian tetrahedron.

Original entry on oeis.org

117, 160, 203, 225, 234, 318, 319, 319, 320, 351, 406, 429, 450, 468, 468, 480, 585, 595, 595, 595, 609, 612, 636, 638, 638, 640, 671, 675, 680, 680, 697, 697, 702, 741, 780, 800, 812, 819, 858, 884, 884, 888, 900, 925, 935, 936, 936, 954, 957, 957, 960, 990, 990
Offset: 1

Views

Author

Albert Lau, May 19 2016

Keywords

Comments

A Heronian tetrahedron or perfect tetrahedron is a tetrahedron whose edge lengths, face areas and volume are all integers.

Examples

			The following are examples of Heronian tetrahedra.
dAB, dAC, dBC, dCD, dBD, dAD, SABC,  SABD,  SACD,  SBCD,  Volume
117, 84,  51,  52,  53,  80,  1890,  1800,  2016,  1170,  18144
160, 153, 25,  39,  56,  120, 1872,  2688,  1404,  420,   8064
203, 195, 148, 203, 195, 148, 13650, 13650, 13650, 13650, 611520
225, 200, 65,  119, 156, 87,  6300,  4914,  2436,  3570,  35280
234, 168, 102, 104, 106, 160, 7560,  7200,  8064,  4680,  145152
318, 221, 203, 42,  175, 221, 22260, 18564, 4620,  2940,  206976
319, 318, 175, 175, 210, 221, 26796, 23100, 18564, 14700, 1034880
319, 318, 175, 203, 252, 221, 26796, 27720, 22260, 17640, 1241856
320, 306, 50,  78,  112, 240, 7488,  10752, 5616,  1680,  64512
351, 252, 153, 156, 159, 240, 17010, 16200, 18144, 10530, 489888
where
dPQ is the distance between vertices P and Q and
SPQR is the area of triangle PQR.
		

Crossrefs

Programs

  • Mathematica
    aMax=360(*WARNING:takes a long time*);
    heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&;
    cayley=1/24Sqrt[2Det[{
      {0,1,1,1,1},
      {1,0,#1^2,#2^2,#6^2},
      {1,#1^2,0,#3^2,#5^2},
      {1,#2^2,#3^2,0,#4^2},
      {1,#6^2,#5^2,#4^2,0}
    }]]&;
    Do[
      S1=heron[a,b,c];
      If[S1//IntegerQ//Not,Continue[]];
      Do[
        S2=heron[a,e,f];
        If[S2//IntegerQ//Not,Continue[]];
        Do[
          If[b==e&&c>f||b==f&&c>e,Continue[]];
          S3=heron[b,d,f];
          If[S3//IntegerQ//Not,Continue[]];
          S4=heron[c,d,e];
          If[S4//IntegerQ//Not,Continue[]];
          V=cayley[a,b,c,d,e,f];
          If[V//IntegerQ//Not,Continue[]];
          If[V==0,Continue[]];
          a//Sow(*{a,b,c,d,e,f,S1,S2,S3,S4,V}//Sow*);
        ,{d,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1-S2)/a)^2]//Ceiling,Min[a,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1+S2)/a)^2]]}];
      ,{e,a-b+1,b},{f,a-e+1,b}];
    ,{a,117,aMax},{b,a/2//Ceiling,a},{c,a-b+1,b}]//Reap//Last//Last

Extensions

a(11)-a(53) from Giovanni Resta, May 20 2016