cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272389 Longest side of primitive Heronian tetrahedron.

Original entry on oeis.org

117, 160, 203, 225, 318, 319, 319
Offset: 1

Views

Author

Albert Lau, May 21 2016

Keywords

Comments

A Heronian tetrahedron or perfect tetrahedron is a tetrahedron whose edge lengths, face areas and volume are all integers.
Primitive tetrahedron means 6 sides don't share a common factor.

Examples

			see A272388
		

Crossrefs

Programs

  • Mathematica
    aMax=360(*WARNING:takes a long time*);
    heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&;
    cayley=1/24Sqrt[2Det[{
      {0,1,1,1,1},
      {1,0,#1^2,#2^2,#6^2},
      {1,#1^2,0,#3^2,#5^2},
      {1,#2^2,#3^2,0,#4^2},
      {1,#6^2,#5^2,#4^2,0}
    }]]&;
    Do[
      S1=heron[a,b,c];
      If[S1//IntegerQ//Not,Continue[]];
      Do[
        S2=heron[a,e,f];
        If[S2//IntegerQ//Not,Continue[]];
        Do[
          If[GCD[a, b, c, d, e, f] > 1, Continue[]];
          If[b==e&&c>f||b==f&&c>e,Continue[]];
          S3=heron[b,d,f];
          If[S3//IntegerQ//Not,Continue[]];
          S4=heron[c,d,e];
          If[S4//IntegerQ//Not,Continue[]];
          V=cayley[a,b,c,d,e,f];
          If[V//IntegerQ//Not,Continue[]];
          If[V==0,Continue[]];
          a//Sow(*{a,b,c,d,e,f,S1,S2,S3,S4,V}//Sow*);
        ,{d,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1-S2)/a)^2]//Ceiling,Min[a,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1+S2)/a)^2]]}];
      ,{e,a-b+1,b},{f,a-e+1,b}];
    ,{a,117,aMax},{b,a/2//Ceiling,a},{c,a-b+1,b}]//Reap//Last//Last