A272390 Longest side of primitive Heronian tetrahedron with 4 congruent triangle faces.
203, 888, 1804, 2431, 2873
Offset: 1
Examples
Below shows some example: (might contains gap) a, b, c, S, V 203, 195, 148, 13650, 611520 888, 875, 533, 223860, 37608480 1804, 1479, 1183, 870870, 214582368 2431, 2296, 2175, 2277660, 1403038560 2873, 2748, 1825, 2419950, 1355172000 5512, 5215, 1887, 4919460, 1377448800 8484, 6625, 6409, 20980050, 30546952800 11275, 10136, 8619, 41861820, 103147524480 19695, 16448, 13073, 106675680, 323290060800 32708, 31493, 24525, 363332970, 2685757314240
Programs
-
Mathematica
heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&; cayley=1/24Sqrt[2Det[{ {0,1,1,1,1}, {1,0,#1^2,#2^2,#6^2}, {1,#1^2,0,#3^2,#5^2}, {1,#2^2,#3^2,0,#4^2}, {1,#6^2,#5^2,#4^2,0} }]]&; aMin=203; aMax=2000(*WARNING:runs very slow*); Do[ If[GCD[a,b,c]>1,Continue[]]; S=heron[a,b,c]; If[S//IntegerQ//Not,Continue[]]; V=cayley[a,b,c,a,b,c]; If[V//IntegerQ//Not,Continue[]]; a(*{a,b,c,S,V}*)//Sow; ,{a,aMin,aMax} ,{b,a/Sqrt[2]//Ceiling,a-1} ,{c,Mod[a+b,2,Floor[Sqrt[a^2-b^2]]+1],b-1,2} ]//Reap//Last//Last(*//TableForm*) {S,V}=.; (* (*this piece of code runs much faster but might contains gap*) mMax=100; Do[ {a,b,c}={n(m^2+k^2),m(n^2+k^2),(m+n)(m n-k^2)}; {a,b,c}={a,b,c}/GCD[a,b,c]; V=cayley[a,b,c,a,b,c]; If[V//IntegerQ//Not,Continue[]]; a(*{a,b,c,heron[a,b,c],V}*)//Sow ,{m,mMax} ,{n,m-1} ,{k,Floor[Sqrt[(m^2 n)/(2m+n)]+1],n-1} ]//Reap//Last//Last//Union(*TableForm*) {a,b,c,V}=.; *)
Comments