cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272390 Longest side of primitive Heronian tetrahedron with 4 congruent triangle faces.

Original entry on oeis.org

203, 888, 1804, 2431, 2873
Offset: 1

Views

Author

Albert Lau, May 26 2016

Keywords

Comments

A Heronian tetrahedron or perfect tetrahedron is a tetrahedron whose edge lengths, face areas and volume are all integers.
Primitive tetrahedron means 4 edge lengths share no common factor.
Properties:
1. 3 pairs of opposite edge lengths are equal.
2. The perimeter must be an even number.
3. The faces are acute triangles, and cannot be isosceles triangle.
It is known that 5512,8484,11275,19695,32708,294175,683787 are in the sequence.

Examples

			Below shows some example: (might contains gap)
a,     b,     c,     S,         V
203,   195,   148,   13650,     611520
888,   875,   533,   223860,    37608480
1804,  1479,  1183,  870870,    214582368
2431,  2296,  2175,  2277660,   1403038560
2873,  2748,  1825,  2419950,   1355172000
5512,  5215,  1887,  4919460,   1377448800
8484,  6625,  6409,  20980050,  30546952800
11275, 10136, 8619,  41861820,  103147524480
19695, 16448, 13073, 106675680, 323290060800
32708, 31493, 24525, 363332970, 2685757314240
		

Programs

  • Mathematica
    heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&;
    cayley=1/24Sqrt[2Det[{
      {0,1,1,1,1},
      {1,0,#1^2,#2^2,#6^2},
      {1,#1^2,0,#3^2,#5^2},
      {1,#2^2,#3^2,0,#4^2},
      {1,#6^2,#5^2,#4^2,0}
    }]]&;
    aMin=203;
    aMax=2000(*WARNING:runs very slow*);
    Do[
      If[GCD[a,b,c]>1,Continue[]];
      S=heron[a,b,c];
      If[S//IntegerQ//Not,Continue[]];
      V=cayley[a,b,c,a,b,c];
      If[V//IntegerQ//Not,Continue[]];
      a(*{a,b,c,S,V}*)//Sow;
      ,{a,aMin,aMax}
      ,{b,a/Sqrt[2]//Ceiling,a-1}
      ,{c,Mod[a+b,2,Floor[Sqrt[a^2-b^2]]+1],b-1,2}
    ]//Reap//Last//Last(*//TableForm*)
    {S,V}=.;
    (*
    (*this piece of code runs much faster but might contains gap*)
    mMax=100;
    Do[
      {a,b,c}={n(m^2+k^2),m(n^2+k^2),(m+n)(m n-k^2)};
      {a,b,c}={a,b,c}/GCD[a,b,c];
      V=cayley[a,b,c,a,b,c];
      If[V//IntegerQ//Not,Continue[]];
      a(*{a,b,c,heron[a,b,c],V}*)//Sow
      ,{m,mMax}
      ,{n,m-1}
      ,{k,Floor[Sqrt[(m^2 n)/(2m+n)]+1],n-1}
    ]//Reap//Last//Last//Union(*TableForm*)
    {a,b,c,V}=.;
    *)