A272399 The intersection of hexagonal numbers (A000384) and centered 9-gonal numbers (A060544).
1, 28, 91, 190, 325, 496, 703, 946, 1225, 1540, 1891, 2278, 2701, 3160, 3655, 4186, 4753, 5356, 5995, 6670, 7381, 8128, 8911, 9730, 10585, 11476, 12403, 13366, 14365, 15400, 16471, 17578, 18721, 19900, 21115, 22366, 23653, 24976, 26335, 27730, 29161, 30628
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Rest@ CoefficientList[Series[x (1 + 25 x + 10 x^2)/(1 - x)^3, {x, 0, 42}], x] (* Michael De Vlieger, Apr 28 2016 *) LinearRecurrence[{3,-3,1},{1,28,91},50] (* Harvey P. Dale, Nov 08 2024 *)
-
PARI
lista(nn) = for(n=1, nn, print1(10-27*n+18*n^2, ", ")); \\ Altug Alkan, Apr 28 2016
-
PARI
a(n)=18*n^2-27*n+10 \\ Charles R Greathouse IV, Apr 28 2016
-
PARI
Vec(x*(1+25*x+10*x^2) / (1-x)^3 + O(x^50)) \\ Colin Barker, Apr 29 2016
Formula
a(n) = A272398(4*n-3).
a(n) = 10-27*n+18*n^2.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
G.f.: x*(1+25*x+10*x^2) / (1-x)^3.
E.g.f.: (9*x*(2*x - 1) + 10)*exp(x) - 10. - Ilya Gutkovskiy, Apr 28 2016