cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272399 The intersection of hexagonal numbers (A000384) and centered 9-gonal numbers (A060544).

Original entry on oeis.org

1, 28, 91, 190, 325, 496, 703, 946, 1225, 1540, 1891, 2278, 2701, 3160, 3655, 4186, 4753, 5356, 5995, 6670, 7381, 8128, 8911, 9730, 10585, 11476, 12403, 13366, 14365, 15400, 16471, 17578, 18721, 19900, 21115, 22366, 23653, 24976, 26335, 27730, 29161, 30628
Offset: 1

Views

Author

Colin Barker, Apr 28 2016

Keywords

Crossrefs

Cf. A000384, A060544, A272398 (union).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 25 x + 10 x^2)/(1 - x)^3, {x, 0, 42}], x] (* Michael De Vlieger, Apr 28 2016 *)
    LinearRecurrence[{3,-3,1},{1,28,91},50] (* Harvey P. Dale, Nov 08 2024 *)
  • PARI
    lista(nn) = for(n=1, nn, print1(10-27*n+18*n^2, ", ")); \\ Altug Alkan, Apr 28 2016
    
  • PARI
    a(n)=18*n^2-27*n+10 \\ Charles R Greathouse IV, Apr 28 2016
    
  • PARI
    Vec(x*(1+25*x+10*x^2) / (1-x)^3 + O(x^50)) \\ Colin Barker, Apr 29 2016

Formula

a(n) = A272398(4*n-3).
a(n) = 10-27*n+18*n^2.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
G.f.: x*(1+25*x+10*x^2) / (1-x)^3.
a(n) = A000384(3*n-2) = A060544(2*n-1). - Robert Israel, Apr 28 2016
E.g.f.: (9*x*(2*x - 1) + 10)*exp(x) - 10. - Ilya Gutkovskiy, Apr 28 2016