A272445 Numbers of paths for moving a king from a corner to the opposite one in an n X n chessboard, provided that each cell must be reached exactly once.
1, 2, 30, 4942, 5853876, 58039036412, 4458135334234700, 2811002302704446996926, 14204916761279146343474398608, 580077332863329104087361516015280826, 190934226579364879405564404836420471442186330, 507088717315287736410992294230305692212344811974323748
Offset: 1
Examples
On a 2 X 2 chessboard, the king has 2 paths to go from a corner to the opposite one, standing exactly one time on each cell, so a(2)=2. On a 3 X 3 chessboard, the king has 30 paths to go from a corner to the opposite one, standing exactly one time on each cell, so a(3)=30.
Links
- César Eliud Lozada, Chess king paths
- Eric Weisstein's World of Mathematics, King Graph
Programs
-
Maple
ChessKingPaths := proc(N, aUsed:=[1]) local nLast, nPrev, nNext, i, j, i1, j1, i2, j2: global aPath, nPaths; if N=1 then aPath:=[[1]]; nPaths:=1; return nPaths; end if: if aUsed=[1] then aPath:=[]; nPaths:=0; end if; nLast:=N^(2); #`opposite corner` nPrev := aUsed[-1] ; #actual position #Check all possible next cells i1:=`if`(floor((nPrev-1)/N)=0,0,-N); i2:=`if`(floor((nPrev-1)/N)=N-1,0,N); j1:=`if`((nPrev-1)mod N=0,0,-1); j2:=`if`((nPrev-1) mod N=N-1,0,1); for i from i1 to i2 by N do for j from j1 to j2 by 1 do if i=0 and j=0 then next fi; #`no move` nNext:=nPrev+i+j; #`out of bounds or already visited` if nNext<1 or nNext>nLast or (nNext in aUsed) then next: fi; #`nLast must be the last one` if (nNext=nLast and nops(aUsed)<>nLast-1) then next fi: if nNext=nLast and nops(aUsed)=nLast-1 then #`path completed` #comment if list is not required. It will consume all memory for N>=5 aPath:=[op(aPath), [op(aUsed),nNext]]; nPaths:=nPaths+1; break: else ChessKingPaths(N,[op(aUsed),nNext]) #move and continue end if; end do: end do: return nPaths; end proc: #For a(n) call this function with parameter n. #Examples: ChessKingPaths(2), ChessKingPaths(3),... #The list of paths is stored in variable aPath.
Extensions
a(5)-a(11) from Andrew Howroyd, Jun 19 2017
a(12) from Ed Wynn, Jul 08 2023