cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A329118 Array read by antidiagonals: T(m, n) is the number of simple paths from corner to diagonally opposite corner on an m X n grid with king moves allowed.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 24, 24, 1, 1, 116, 235, 116, 1, 1, 560, 2922, 2922, 560, 1, 1, 2704, 38169, 96371, 38169, 2704, 1, 1, 13056, 494596, 3764367, 3764367, 494596, 13056, 1, 1, 63040, 6375379, 150610151, 447544629, 150610151, 6375379, 63040, 1, 1, 304384, 82191766, 5898799685, 56182569218, 56182569218, 5898799685, 82191766, 304384, 1
Offset: 1

Views

Author

Andrew Howroyd, Nov 05 2019

Keywords

Examples

			Array begins:
===================================================================
m\n | 1     2       3          4             5                6
----+--------------------------------------------------------------
  1 | 1     1       1          1             1                1 ...
  2 | 1     5      24        116           560             2704 ...
  3 | 1    24     235       2922         38169           494596 ...
  4 | 1   116    2922      96371       3764367        150610151 ...
  5 | 1   560   38169    3764367     447544629      56182569218 ...
  6 | 1  2704  494596  150610151   56182569218   22132498074021 ...
  7 | 1 13056 6375379 5898799685 6972159602221 8656506756327178 ...
  ...
		

Crossrefs

Main diagonal is A140518.

A308129 Number of (undirected) Hamiltonian paths on the n X n king graph.

Original entry on oeis.org

1, 12, 392, 171592, 364618672, 6544911081900, 829555065360355292, 817534730458899350635436, 6154392250018061759082363305112, 360916610325065945171647827293872547848, 165298493343313203241690299664254975948394404072
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2019

Keywords

Crossrefs

Main diagonal of A350729.

Formula

a(n) = A158651(n)/2 for n > 1.

Extensions

a(1) corrected by Andrew Howroyd, Jan 16 2022

A350729 Array read by antidiagonals: T(m,n) is the number of (undirected) Hamiltonian paths in the m X n king graph.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 48, 48, 1, 1, 208, 392, 208, 1, 1, 768, 4678, 4678, 768, 1, 1, 2752, 43676, 171592, 43676, 2752, 1, 1, 9472, 406396, 4743130, 4743130, 406396, 9472, 1, 1, 32000, 3568906, 132202038, 364618672, 132202038, 3568906, 32000, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 16 2022

Keywords

Examples

			Array begins:
===========================================================
m\n | 1    2      3         4           5             6 ...
----+------------------------------------------------------
  1 | 1    1      1         1           1             1 ...
  2 | 1   12     48       208         768          2752 ...
  3 | 1   48    392      4678       43676        406396 ...
  4 | 1  208   4678    171592     4743130     132202038 ...
  5 | 1  768  43676   4743130   364618672   28808442502 ...
  6 | 1 2752 406396 132202038 28808442502 6544911081900 ...
     ...
		

Crossrefs

Main diagonal is A308129.

Formula

T(m,n) = T(n,m).

A272469 Numbers of n-step paths of a king moving on an n X n chessboard, starting at a corner and not visiting any cell twice.

Original entry on oeis.org

0, 6, 50, 322, 1874, 10558, 58716, 325758, 1808778, 10068548, 56213606, 314785072, 1767660604, 9951449844, 56151698716, 317484868212, 1798343124800, 10203031413894
Offset: 1

Views

Author

César Eliud Lozada, Apr 30 2016

Keywords

Examples

			On an n X n chessboard, a king in a corner is allowed to have n moves. For n=2, let's name the cells A1,A2,B1,B2 with the king at A1. Two moves, without repeating cells, can be done in the following 6 different ways: {A1-A2-B1, A1-A2-B2, A1-B1-A2, A1-B1-B2, A1-B2-A2, A1-B2-B1}. So a(2)=6.
		

Crossrefs

Cf. A272445.

Programs

  • Maple
    pathCount := proc (N)
    local g1, g2, nStep, gg, nCells, nPrev, i1, i2, j1, j2, i, j, nNext;
        nCells := N^2; g1 := [[1]];
        if N = 1 then return nops(g1) fi; #forced value for N=0
        for nStep to N do
            g2 := [];
            for gg in g1 do
                nPrev := gg[-1];
                i1 := `if`(floor((nPrev-1)/N) = 0, 0, -N);
                i2 := `if`(floor((nPrev-1)/N) = N-1, 0, N);
                j1 := `if`(`mod`(nPrev-1, N) = 0, 0, -1);
                j2 := `if`(`mod`(nPrev-1, N) = N-1, 0, 1);
                for i from i1 by N to i2 do
                    for j from j1 to j2 do
                        if i = 0 and j = 0 then next fi;
                        nNext := nPrev+i+j;
                        if nNext < 0 or nCells < nNext or (nNext in gg) then next fi;
                        g2 := [op(g2), [op(gg), nNext]]
                    end do
                end do
            end do;
            g1 := g2
        end do;
        return nops(g1);
    end proc:
    [seq(pathCount(n), n = 1 .. 6)];

Extensions

a(9)-a(16) from Alois P. Heinz, May 01 2016
a(17)-a(18) from Bert Dobbelaere, Jan 08 2019

A351110 Triangle read by rows: T(m,n) is the number of paths for a Racetrack car (using Moore neighborhood) with initial velocity zero, going from one corner to the diagonally opposite corner on an m X n grid, such that all positions are visited exactly once, 1 <= n <= m.

Original entry on oeis.org

1, 1, 0, 1, 1, 6, 1, 0, 15, 2, 1, 1, 70, 289, 9436, 1, 0, 294, 191, 128020
Offset: 1

Views

Author

Pontus von Brömssen, Feb 01 2022

Keywords

Comments

For a Racetrack car using von Neumann neighborhood (see A351042), there are no such paths if 2 <= n <= m, because the car will never be able to leave a corner of the grid (except the corner where it starts).

Examples

			Triangle begins:
  m\n| 1  2   3   4      5  6
  ---+-----------------------
  1  | 1
  2  | 1  0
  3  | 1  1   6
  4  | 1  0  15   2
  5  | 1  1  70 289   9436
  6  | 1  0 294 191 128020  ?
		

Crossrefs

Cf. A000012 (column n=1), A000035 (column n=2), A272445, A351041, A351042, A351106, A351111 (main diagonal).

A351111 Number of paths for a Racetrack car (using Moore neighborhood) with initial velocity zero, going from one corner to the diagonally opposite corner on an n X n grid, such that all positions are visited exactly once.

Original entry on oeis.org

1, 0, 6, 2, 9436
Offset: 1

Views

Author

Pontus von Brömssen, Feb 01 2022

Keywords

Examples

			For n = 4 the following path and its reflection in the diagonal are the only solutions, so a(4) = 2.
   _   _
  | | |_
  |_ \  |
   _| |_|
		

Crossrefs

Main diagonal of A351110.

A338426 a(n) is the number of paths a chess king can take from (0,0) to (n+1,0) touching each point in {-1,0,1} X {1,2,...,n} exactly once.

Original entry on oeis.org

1, 2, 28, 154, 1206, 8364, 60614, 432636, 3104484, 22235310, 159360540, 1141875800, 8182608226, 58634396372, 420162632840, 3010793013534, 21574706493988, 154599722419136, 1107828637412194, 7938463325113516, 56885333141857872, 407628148378295190
Offset: 0

Views

Author

Peter Kagey, Oct 25 2020

Keywords

Examples

			For n = 1, the a(1) = 2 paths are (0,0)->(1,1)->(1,0)->(1,-1)->(2,0) and (0,0)->(1,-1)->(1,0)->(1,1)->(2,0).
An example of one of the a(2) = 28 paths is (0,0)->(1,1)->(2,1)->(2,0)->(1,-1)->(1,0)->(2,-1)->(3,0).
		

Crossrefs

Formula

a(n) = 7*a(n-1) + 6*a(n-2) - 39*a(n-3) + 29*a(n-4) + 28*a(n-5) - 26*a(n-6) - 10*a(n-7) + 6*a(n-8) for n >= 8.
Showing 1-7 of 7 results.