A272459 The total number of different isosceles trapezoids, excluding squares, that can be drawn on an n X n square grid where the corners of each individual trapezoid lie on a lattice point.
0, 1, 7, 18, 40, 71, 119, 180, 264, 365, 495, 646, 832, 1043, 1295, 1576, 1904, 2265, 2679, 3130, 3640, 4191, 4807, 5468, 6200, 6981, 7839, 8750, 9744, 10795, 11935, 13136, 14432, 15793, 17255, 18786, 20424, 22135, 23959, 25860, 27880, 29981, 32207, 34518
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Magma
[(n*(-1-3*(-1)^n-12*n+10*n^2))/24 : n in [1..60]]; // Wesley Ivan Hurt, Sep 12 2016
-
Maple
A272459:=n->(n*(-1-3*(-1)^n-12*n+10*n^2))/24: seq(A272459(n), n=1..60); # Wesley Ivan Hurt, Sep 12 2016
-
Mathematica
CoefficientList[Series[x^2 (1 + 5 x + 3 x^2 + x^3)/((1 - x)^4 (1 + x)^2), {x, 0, 44}], x] (* Michael De Vlieger, May 08 2016 *)
-
PARI
concat(0, Vec(x^2*(1+5*x+3*x^2+x^3)/((1-x)^4*(1+x)^2) + O(x^50))) \\ Colin Barker, May 07 2016
Formula
From Colin Barker, May 07 2016: (Start)
a(n) = (n*(-1 - 3*(-1)^n - 12*n + 10*n^2))/24.
a(n) = (5*n^3 - 6*n^2 - 2*n)/12 for n even.
a(n) = (5*n^3 - 6*n^2 + n)/12 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
G.f.: x^2*(1+5*x+3*x^2+x^3) / ((1-x)^4*(1+x)^2).
(End)
Comments