A272469 Numbers of n-step paths of a king moving on an n X n chessboard, starting at a corner and not visiting any cell twice.
0, 6, 50, 322, 1874, 10558, 58716, 325758, 1808778, 10068548, 56213606, 314785072, 1767660604, 9951449844, 56151698716, 317484868212, 1798343124800, 10203031413894
Offset: 1
Examples
On an n X n chessboard, a king in a corner is allowed to have n moves. For n=2, let's name the cells A1,A2,B1,B2 with the king at A1. Two moves, without repeating cells, can be done in the following 6 different ways: {A1-A2-B1, A1-A2-B2, A1-B1-A2, A1-B1-B2, A1-B2-A2, A1-B2-B1}. So a(2)=6.
Crossrefs
Cf. A272445.
Programs
-
Maple
pathCount := proc (N) local g1, g2, nStep, gg, nCells, nPrev, i1, i2, j1, j2, i, j, nNext; nCells := N^2; g1 := [[1]]; if N = 1 then return nops(g1) fi; #forced value for N=0 for nStep to N do g2 := []; for gg in g1 do nPrev := gg[-1]; i1 := `if`(floor((nPrev-1)/N) = 0, 0, -N); i2 := `if`(floor((nPrev-1)/N) = N-1, 0, N); j1 := `if`(`mod`(nPrev-1, N) = 0, 0, -1); j2 := `if`(`mod`(nPrev-1, N) = N-1, 0, 1); for i from i1 by N to i2 do for j from j1 to j2 do if i = 0 and j = 0 then next fi; nNext := nPrev+i+j; if nNext < 0 or nCells < nNext or (nNext in gg) then next fi; g2 := [op(g2), [op(gg), nNext]] end do end do end do; g1 := g2 end do; return nops(g1); end proc: [seq(pathCount(n), n = 1 .. 6)];
Extensions
a(9)-a(16) from Alois P. Heinz, May 01 2016
a(17)-a(18) from Bert Dobbelaere, Jan 08 2019