cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272471 Triangle T(n,m) by rows: The number of tatami tilings of a 2 X n grid with dimers and 2*m monomers.

Original entry on oeis.org

1, 1, 2, 4, 3, 9, 1, 4, 18, 7, 6, 35, 26, 1, 9, 64, 73, 10, 13, 112, 179, 52, 1, 19, 192, 403, 194, 13, 28, 323, 850, 597, 87, 1, 41, 534, 1707, 1624, 408, 16, 60, 872, 3303, 4046, 1532, 131, 1, 88, 1410, 6203, 9428, 4951, 742, 19, 129, 2260, 11366, 20847, 14361, 3308
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2016

Keywords

Examples

			The triangle starts in row n=1 as:
1,1;
2,4;
3,9,1;
4,18,7;
6,35,26,1;
9,64,73,10;
13,112,179,52,1;
19,192,403,194,13;
28,323,850,597,87,1;
41,534,1707,1624,408,16;
60,872,3303,4046,1532,131,1;
88,1410,6203,9428,4951,742,19;
129,2260,11366,20847,14361,3308,184;
189,3596,20407,44194,38369,12472,1223,22;
277,5687,36018,90492,96071,41559,6330,246,1;
406,8946,62648,179982,228224,125942,27382,1878,25;
595,14007,107602,349244,519071,353929,103504,11084,317,1;
872,21842,182800,663470,1138094,935298,352234,54226,2734,28;
1278,33937,307581,1237436,2418496,2348345,1101887,229886,18137,397,1;
1873,52560,513165,2271066,5002459,5646544,3216889,870490,99142,3818,31;
2745,81168,849726,4109303,10106351,13082702,8864264,3008357,466676,28137,486,1;
4023,125022,1397565,7342252,19999147,29352862,23256181,9640660,1949989,170104,5157,34;
5896,192117,2284716,12971722,38856275,64030031,58492346,28994720,7393154,881310,41813,584,1;
8641,294588,3714618,22686720,74268850,136248856,141811450,82607092,25852870,4033500,277165,6778,37;
		

Crossrefs

Cf. A180965 (row sums), A000930 (column m=0), A046741 (without tatami condition).

Programs

  • Mathematica
    Select[Flatten[CoefficientList[CoefficientList[Series[x*(y^2 + 2*x*y^2 + x^2*y^2 + 1 - x^3)/(x^4 - x^3*y^2 - x^3 - x^2*y^2 + x^2 - 2*x + 1), {x, 0, 10}, {y, 0, 10}], x], y]], # != 0 &] (* G. C. Greubel, Apr 28 2017 *)

Formula

G.f. x*(y^2 +2*x*y^2 +x^2*y^2 +1 -x^3)/(x^4 -x^3*y^2 -x^3 -x^2*y^2 +x^2 -2*x +1). - R. J. Mathar, May 01 2016