cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272515 Number of set partitions of [n] into three blocks with distinct sizes.

Original entry on oeis.org

60, 105, 448, 2016, 4980, 15675, 61644, 155155, 482573, 1733550, 4549808, 13890360, 48104628, 128949675, 392009140, 1322692581, 3607864403, 10929721440, 36245555284, 100109572875, 302709337515, 990788537700, 2763564406113, 8344789976616, 27039048750600
Offset: 6

Views

Author

Alois P. Heinz, May 01 2016

Keywords

Crossrefs

Column k=3 of A131632.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n
          or t*(2*i+1-t)/2n, 0, b(n-i, i-1, t-1)*binomial(n,i))))
        end:
    a:= n-> b(n$2, 3):
    seq(a(n), n=6..40);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[t > i || t(t+1)/2 > n || t(2i+1-t)/2 < n, 0, If[n == 0, 1, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t - 1]* Binomial[n, i]]]];
    a[n_] := b[n, n, 3];
    a /@ Range[6, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)

Formula

a(n) = n! * [x^n*y^3] Product_{n>=1} (1+y*x^n/n!).
Conjecture: a(n) ~ 3^n / 6. - Vaclav Kotesovec, Dec 11 2020