A272515 Number of set partitions of [n] into three blocks with distinct sizes.
60, 105, 448, 2016, 4980, 15675, 61644, 155155, 482573, 1733550, 4549808, 13890360, 48104628, 128949675, 392009140, 1322692581, 3607864403, 10929721440, 36245555284, 100109572875, 302709337515, 990788537700, 2763564406113, 8344789976616, 27039048750600
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..1000
Crossrefs
Column k=3 of A131632.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n or t*(2*i+1-t)/2
n, 0, b(n-i, i-1, t-1)*binomial(n,i)))) end: a:= n-> b(n$2, 3): seq(a(n), n=6..40); -
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[t > i || t(t+1)/2 > n || t(2i+1-t)/2 < n, 0, If[n == 0, 1, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t - 1]* Binomial[n, i]]]]; a[n_] := b[n, n, 3]; a /@ Range[6, 40] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
Formula
a(n) = n! * [x^n*y^3] Product_{n>=1} (1+y*x^n/n!).
Conjecture: a(n) ~ 3^n / 6. - Vaclav Kotesovec, Dec 11 2020