A272551 Number of singular vector tuples for a general 4-dimensional n X n X n X n tensor.
1, 24, 997, 51264, 2940841, 180296088, 11559133741, 765337680384, 51921457661905, 3590122671128664, 252070718210663749, 17922684123178825536, 1287832671004683373753, 93368940577497932331288, 6821632357294515590873917, 501741975445243527381995520, 37121266623211130111114816929
Offset: 1
Keywords
Links
- Shalosh B. Ekhad and Doron Zeilberger, On the Number of Singular Vector Tuples of Hyper-Cubical Tensors, 2016.
- Shalosh B. Ekhad and Doron Zeilberger, On the number of Singular Vector Tuples of Hyper-Cubical Tensors, arXiv preprint arXiv:1605.00172 [math.CO], 2016.
Programs
-
Mathematica
a[n_] := Module[{a, b, c, d, s}, s = Series[( ((a + b + c)^n - d^n)* ((b + c + d)^n - a^n)* ((c + d + a)^n - b^n)* ((d + a + b)^n - c^n))/( (a + b + c - d)* (b + c + d - a)* (c + d + a - b)* (d + a + b - c)), {a, 0, n}, {b, 0, n}, {c, 0, n}, {d, 0, n}] // Normal // Expand; Cases[List @@ s, k_Integer a^(n-1) b^(n-1) c^(n-1) d^(n-1)] /. (a|b|c|d) -> 1 // First ]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 17}] (* Jean-François Alcover, Aug 19 2018, after A271905 *)