A272597 Numbers n such that the multiplicative group modulo n is the direct product of 7 cyclic groups.
120120, 157080, 175560, 185640, 207480, 212520, 240240, 251160, 267960, 271320, 286440, 291720, 314160, 316680, 326040, 328440, 338520, 341880, 351120, 360360, 367080, 371280, 378840, 394680, 397320, 404040, 408408, 414120, 414960, 425040, 426360, 434280, 442680, 447720, 456456, 462840, 469560, 471240
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
A046072[n_] := Which[n == 1 || n == 2, 1, OddQ[n], PrimeNu[n], EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1, Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n], Divisible[n, 8], PrimeNu[n] + 1]; Select[Range[5*10^5], A046072[#] == 7&] (* Jean-François Alcover, Dec 22 2021, after Geoffrey Critzer in A046072 *)
-
PARI
for(n=1, 10^6, my(t=#(znstar(n)[2])); if(t==7, print1(n, ", ")));
Comments