cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272660 Number of distinct characteristic polynomials of n X n matrices with elements {t, 1, 2} where t is an indeterminate.

Original entry on oeis.org

1, 3, 36, 1782, 760678
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2016

Keywords

Examples

			From _Robin Visser_, May 01 2025: (Start)
For n = 1, the a(1) = 3 possible characteristic polynomials are x - 2, x - 1, and x - t.
For n = 2, the a(2) = 36 possible characteristic polynomials are x^2 - 2x - 1, x^2 - 2x, x^2 + (-t-2)x, x^2 + (-t-2)x - t^2+2t, x^2 + (-t-1)x, x^2 + (-t-1)x - t^2+t, x^2 - 4x, x^2 - 4x + 2, x^2 - 4x + 3, x^2 - 3x - 2, x^2 - 3x, x^2 - 3x + 1, x^2 - 2tx + t^2-4, x^2 - 2tx + t^2-2, x^2 - 2tx + t^2-1, x^2 + (-t-2)x + t, x^2 - 4x - t+4, x^2 - 4x - t^2+4, x^2 - 2x - 3, x^2 - 2tx, x^2 - 2tx + t^2-t, x^2 - 2tx + t^2-2t, x^2 - 4x - 2t+4, x^2 - 3x - t^2+2, x^2 - 3x - t+2, x^2 - 3x - 2t+2, x^2 - 2x - t^2+1, x^2 - 2x - t+1, x^2 - 2x - 2t+1, x^2 + (-t-2)x + 2t-4, x^2 + (-t-2)x + 2t-2, x^2 + (-t-2)x + 2t-1, x^2 + (-t-1)x + t-4, x^2 + (-t-1)x + t-2, x^2 + (-t-1)x + t-1, and x^2 + (-t-1)x - t. (End)
		

References

  • Robert M. Corless, Bohemian Eigenvalues, Talk Presented at Computational Discovery in Mathematics (ACMES 2), University of Western Ontario, May 12 2016. (Talk based on joint work with Steven E. Thornton, Sonia Gupta, Jonathan Brino-Tarasoff, Venkat Balasubramanian.)

Crossrefs

Six classes of matrices mentioned in Rob Corless's talk: A272658, A272659, A272660, A272661, A272662, A272663.

Programs

  • Sage
    import itertools
    def a(n):
        ans, t = set(), SR('t')
        W = itertools.product([t, 1, 2], repeat=n*n)
        for w in W: ans.add(Matrix(SR, n, n, w).charpoly())
        return len(ans)  # Robin Visser, May 01 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 28 2023
a(4) from Robin Visser, May 01 2025