A272661 Number of distinct characteristic polynomials of n X n matrices with elements {0, 1}.
1, 2, 6, 32, 333, 8927, 758878
Offset: 0
References
- Robert M. Corless, Bohemian Eigenvalues, Talk Presented at Computational Discovery in Mathematics (ACMES 2), University of Western Ontario, May 12 2016. (Talk based on joint work with Steven E. Thornton, Sonia Gupta, Jonathan Brino-Tarasoff, Venkat Balasubramanian.)
Links
- Robert M. Corless, Steven E. Thornton, Sonia Gupta, Jonathan Brino-Tarasoff, Venkat Balasubramanian, Slides from "Bohemian Eigenvalues" talk.
- Robert Israel, Examples for n=5
Crossrefs
Programs
-
MATLAB
function count = A272661(N) C = zeros(0,N); count = 0; V = zeros(1,N); L = -floor(N/2) + [0:N-1]; for x = 0:2^(N^2)-1; r = dec2bin(x+2^(N^2))-'0'; A = reshape(r(2:end),N,N); rowcounts = sum(A,2); colcounts = sum(A,1); if ~issorted(rowcounts)|| rowcounts(N) < max(colcounts) continue end for i = 1:N V(i) = round(det(A - L(i)*eye(N))); end if ~ismember(V, C, 'rows') count = count+1; C(count,:) = V; end end end % Robert Israel, Aug 18 2016
-
Python
from itertools import product from sympy import Matrix def A272661(n): return len({tuple(Matrix(n,n,p).charpoly().as_list()) for p in product((0,1),repeat=n**2)}) if n else 1 # Chai Wah Wu, Sep 30 2023
Extensions
a(5) from Robert Israel, Aug 18 2016
a(6) from Steven E. Thornton, Mar 09 2019
a(0)=1 prepended by Alois P. Heinz, Sep 28 2023