cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272661 Number of distinct characteristic polynomials of n X n matrices with elements {0, 1}.

Original entry on oeis.org

1, 2, 6, 32, 333, 8927, 758878
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2016

Keywords

References

  • Robert M. Corless, Bohemian Eigenvalues, Talk Presented at Computational Discovery in Mathematics (ACMES 2), University of Western Ontario, May 12 2016. (Talk based on joint work with Steven E. Thornton, Sonia Gupta, Jonathan Brino-Tarasoff, Venkat Balasubramanian.)

Crossrefs

Six classes of matrices mentioned in Rob Corless's talk: A272658, A272659, A272660, A272661, A272662, A272663.

Programs

  • MATLAB
    function count = A272661(N)
      C = zeros(0,N);
      count = 0;
      V = zeros(1,N);
      L = -floor(N/2) + [0:N-1];
      for x = 0:2^(N^2)-1;
        r = dec2bin(x+2^(N^2))-'0';
        A = reshape(r(2:end),N,N);
        rowcounts = sum(A,2);
        colcounts = sum(A,1);
        if ~issorted(rowcounts)|| rowcounts(N) < max(colcounts)
          continue
        end
        for i = 1:N
            V(i) = round(det(A - L(i)*eye(N)));
        end
        if ~ismember(V, C, 'rows')
          count = count+1;
          C(count,:) = V;
        end
      end
    end  % Robert Israel, Aug 18 2016
    
  • Python
    from itertools import product
    from sympy import Matrix
    def A272661(n): return len({tuple(Matrix(n,n,p).charpoly().as_list()) for p in product((0,1),repeat=n**2)}) if n else 1 # Chai Wah Wu, Sep 30 2023

Extensions

a(5) from Robert Israel, Aug 18 2016
a(6) from Steven E. Thornton, Mar 09 2019
a(0)=1 prepended by Alois P. Heinz, Sep 28 2023