cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A078181 a(n) = Sum_{d|n, d == 1 (mod 3)} d.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 8, 5, 1, 11, 1, 5, 14, 8, 1, 21, 1, 1, 20, 15, 8, 23, 1, 5, 26, 14, 1, 40, 1, 11, 32, 21, 1, 35, 8, 5, 38, 20, 14, 55, 1, 8, 44, 27, 1, 47, 1, 21, 57, 36, 1, 70, 1, 1, 56, 40, 20, 59, 1, 15, 62, 32, 8, 85, 14, 23, 68, 39, 1, 88, 1, 5, 74, 38, 26, 100, 8, 14, 80, 71, 1
Offset: 1

Views

Author

Vladeta Jovovic, Nov 21 2002

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 mod k} d: A000593 (k=2), this sequence (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8).

Programs

  • Maple
    A078181 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(d,3) =1 then
                a :=a+d ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, May 11 2016
  • Mathematica
    a[n_] := Plus @@ Select[Divisors[n], Mod[#, 3] == 1 &]; Array[a, 100] (* Giovanni Resta, May 11 2016 *)

Formula

G.f.: Sum_{n>=0} (3*n+1)*x^(3*n+1)/(1-x^(3*n+1)).
G.f.: -q*P'/P where P = Product_{n>=0} (1 - q^(3*n+1)). - Joerg Arndt, Aug 03 2011
Conjecture. If a(n)=n+1 then n==1 (mod 3). (Is this easy to settle? It has been verified for n=1,2,3,...,2000.) - John W. Layman, Apr 03 2006
The conjecture is false. The first and only counterexample below 10^8 is a(6800) = 6801 and 6800 == 2 (mod 3). - Lambert Herrgesell (zero815(AT)googlemail.com), May 06 2008
Equals A051731 * [1, 0, 0, 4, 0, 0, 7, 0, 0, 10, ...]. - Gary W. Adamson, Nov 06 2007
A272027(n/3) + a(n) + A078182(n) = A000203(n). - R. J. Mathar, May 25 2020
G.f.: Sum_{n >= 1} x^n*(1 + 2*x^(3*n))/(1 - x^(3*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 = 0.274155... (A353908). - Amiram Eldar, Nov 26 2023

A272715 Numbers equal to the sum of their proper divisors d such that d mod 3 = 2.

Original entry on oeis.org

280, 34960, 4960000, 15887872, 20527600, 105056320, 44781248512
Offset: 1

Views

Author

Giovanni Resta, May 05 2016

Keywords

Comments

The numbers equal to the sum of their proper divisors which are a multiple of 3 are the perfect numbers (A000396) multiplied by 3.

Examples

			The proper divisors of 280 which are congruent to 2 mod 3 are 2, 5, 8, 14, 20, 35, 56, and 140. Since their sum is 280, 280 is a term.
		

Crossrefs

Cf. A272716, A000396, A078182 (sum of proper and improver divisors).

Programs

  • Mathematica
    Select[Range[40000], # == Plus @@ Select[ Most@ Divisors[#], Mod[#, 3] == 2 &] &]
  • PARI
    is(n)=sumdiv(n, d, if(d%3==2, d, 0))==if(n%3==2, 2*n, n) \\ Charles R Greathouse IV, May 09 2016
Showing 1-2 of 2 results.