cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272757 Denominators of the Fabius function F(1/2^n).

Original entry on oeis.org

1, 2, 72, 288, 2073600, 33177600, 561842749440, 179789679820800, 704200217922109440000, 180275255788060016640000, 1246394851358539387238350848000, 6381541638955721662660356341760000, 292214732887898713986916575925267070976000000
Offset: 0

Views

Author

Vladimir Reshetnikov, May 05 2016

Keywords

Comments

The Fabius function F(x) is the smooth monotone increasing function on [0, 1] satisfying F(0) = 0, F(1) = 1, F'(x) = 2*F(2*x) for 0 < x < 1/2, F'(x) = 2*F(2*(1-x)) for 1/2 < x < 1. It is infinitely differentiable at every point in the interval, but is nowhere analytic. It assumes rational values at dyadic rationals.
From Juan Arias-de-Reyna, Jun 08 2017: (Start)
It is true that n! divides a(n) for all n? This is true for the first 200 terms.
If this is true A272755, the sequence of numerators of F(2^(-n)) is also the sequence of numerators of the half moments of Rvachëv function. (Cf. A288161). (End)

Examples

			A272755/A272757 = 1/1, 1/2, 5/72, 1/288, 143/2073600, 19/33177600, 1153/561842749440, 583/179789679820800, ...
		

References

  • Rvachev V. L., Rvachev V. A., Non-classical methods of the approximation theory in boundary value problems, Naukova Dumka, Kiev (1979) (in Russian), pages 117-125.

Crossrefs

Cf. A272755 (numerators), A272343.

Programs

  • Mathematica
    c[0] = 1; c[n_] := c[n] = Sum[(-1)^k c[n - k]/(2 k + 1)!, {k, 1, n}] / (4^n - 1); Denominator@Table[Sum[c[k] (-1)^k / (n - 2 k)!, {k, 0, n/2}] / 2^((n + 1) n/2), {n, 0, 15}] (* Vladimir Reshetnikov, Oct 16 2016 *)

Formula

Recurrence: d(0) = 1, d(n) = (1/(n+1)! + Sum_{k=1..n-1} (2^(k*(k-1)/2)/(n-k+1)!)*d(k))/((2^n-1)*2^(n*(n-1)/2)), where d(n) = A272755(n)/A272757(n). - Vladimir Reshetnikov, Feb 27 2017