A272757 Denominators of the Fabius function F(1/2^n).
1, 2, 72, 288, 2073600, 33177600, 561842749440, 179789679820800, 704200217922109440000, 180275255788060016640000, 1246394851358539387238350848000, 6381541638955721662660356341760000, 292214732887898713986916575925267070976000000
Offset: 0
Examples
A272755/A272757 = 1/1, 1/2, 5/72, 1/288, 143/2073600, 19/33177600, 1153/561842749440, 583/179789679820800, ...
References
- Rvachev V. L., Rvachev V. A., Non-classical methods of the approximation theory in boundary value problems, Naukova Dumka, Kiev (1979) (in Russian), pages 117-125.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..64
- Juan Arias de Reyna, An infinitely differentiable function with compact support: Definition and properties, arXiv:1702.05442 [math.CA], 2017.
- Juan Arias de Reyna, On the arithmetic of Fabius function, arXiv:1702.06487 [math.NT], 2017.
- Yuri Dimitrov, G. A. Edgar, Solutions of Self-differential Functional Equations
- G. A. Edgar, Examples of self differential functions
- J. Fabius, A probabilistic example of a nowhere analytic C^infty-function, Z. Wahrscheinlichkeitstheorie verw. Gebiete (1966) 5: 173.
- Jan Kristian Haugland, Evaluating the Fabius function, arXiv:1609.07999 [math.GM], 23 Sep 2016.
- Wikipedia, Fabius function
Programs
-
Mathematica
c[0] = 1; c[n_] := c[n] = Sum[(-1)^k c[n - k]/(2 k + 1)!, {k, 1, n}] / (4^n - 1); Denominator@Table[Sum[c[k] (-1)^k / (n - 2 k)!, {k, 0, n/2}] / 2^((n + 1) n/2), {n, 0, 15}] (* Vladimir Reshetnikov, Oct 16 2016 *)
Formula
Recurrence: d(0) = 1, d(n) = (1/(n+1)! + Sum_{k=1..n-1} (2^(k*(k-1)/2)/(n-k+1)!)*d(k))/((2^n-1)*2^(n*(n-1)/2)), where d(n) = A272755(n)/A272757(n). - Vladimir Reshetnikov, Feb 27 2017
Comments