cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272851 Number of distinct nonzero Fibonacci numbers among the contiguous substrings of the binary digits of n.

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 3, 5, 3, 2, 3, 3, 2, 3, 3, 4, 4, 4, 4, 3, 5, 5, 3, 5, 3, 2, 3, 3, 4, 4, 2, 3, 3, 3, 4, 3, 4, 5, 4, 5, 4, 4, 4, 4, 3, 3, 5, 6, 5, 6, 4, 3, 5, 5, 3, 5, 3, 2, 3, 3, 3, 4, 4, 5, 4, 4, 3, 2, 3, 4, 3, 5, 3, 3, 4
Offset: 1

Views

Author

Marko Riedel, May 07 2016

Keywords

Examples

			a(53) = 6 because 53=(110101)_2 which contains (1)_2 = 1, (10)_2 = 2, (11)_2 = 3, (101)_2 = 5, (1101)_2 = 13 and (10101)_2 = 21. The one digit only contributes once.
		

Crossrefs

Programs

  • Mathematica
    s = Fibonacci@ Range@ 30; Table[Length@ Select[Union@ Flatten@ Function[k, Map[FromDigits[#, 2] & /@ Partition[k, #, 1] &, Range@ Length@ k]]@IntegerDigits[#, 2] &@ n, MemberQ[s, #] &], {n, 120}] (* Michael De Vlieger, May 08 2016 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) ;
    a(n) = {vb = binary(n); vf = []; for (i=1, #vb, for (j=1, #vb - i + 1, pvb = vector(j, k, vb[i+k-1]); f = subst(Pol(pvb), x, 2); if (f && isfib(f), vf = Set(concat(vf, f))););); #vf;} \\ Michel Marcus, May 08 2016