A272861 Sum of two integers when equal to the product of their prime-counting functions.
12, 16, 18, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 116, 120, 280, 310, 325, 330, 942, 948, 954, 960, 966, 972, 984, 990, 996, 2968, 3003, 8224, 8232, 8240, 8248, 8280, 8288, 8304, 8312, 8360, 8408, 23499, 23508, 23589
Offset: 1
Keywords
Examples
32 is a term because 32 = 10 + 22 = 4 * 8 = pi(10) * pi(22).
Links
- Giovanni Resta, Table of n, a(n) for n = 1..320 (terms < 4*10^9)
- Eric Weisstein's World of Mathematics, Prime Counting Function
Programs
-
Mathematica
nn = 10^3; Select[Range@ nn, Function[k, IntegerQ@ SelectFirst[Range@ nn, k == PrimePi[#] PrimePi[k - #] &]]] (* Version 10, or *) Select[Range[10^3], Function[n, Length@ Select[Transpose@ {#, n - #} &@ Range[Floor[n/2]], n == PrimePi[First@ #] PrimePi[Last@ #] &] > 0]] (* Michael De Vlieger, Jun 30 2016 *)
-
Sage
def g(n): return [k for k in (3..n/2) if n==prime_pi(k)*prime_pi(n-k)] [n for n in range(2,1000) if len(g(n))>0]
Formula
Positive integers n such that n = pi(j) * pi(n-j) for some j.
Extensions
a(50)-a(53) from Giovanni Resta, Jun 29 2016
Comments