A272865 Triangle read by rows, T(n,k) are covariances of inverse power traces of complex Wishart matrices with parameter c=2, for n>=1 and 1<=k<=n.
4, 24, 160, 132, 936, 5700, 720, 5312, 33264, 198144, 3940, 29880, 190980, 1155600, 6823620, 21672, 167712, 1088856, 6670656, 39786120, 233908896, 119812, 941640, 6189540, 38300976, 230340740, 1363667256, 7997325700
Offset: 1
Examples
Triangle starts: 4; 24, 160; 132, 936, 5700; 720, 5312, 33264, 198144; 3940, 29880, 190980, 1155600, 6823620;
References
- F. D. Cunden, "Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities", Phys. Rev. E 91, 060102(R) (2015).
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, "Correlators for the Wigner-Smith time-delay matrix of chaotic cavities", J. Phys. A: Math. Theor. 49, 18LT01 (2016).
- F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, "Moments of Random Matrices and Hypergeometric Orthogonal Polynomials", Commun. Math. Phys. 369, 1091-1145 (2019).
Links
- F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities, arXiv:1412.2172 [cond-mat.mes-hall], 2014-2015.
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Correlators for the Wigner-Smith time-delay matrix of chaotic cavities, arXiv:1601.06690 [math-ph], 2016.
- F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, Moments of Random Matrices and Hypergeometric Orthogonal Polynomials, arXiv:1805.08760 [math-ph], 2018.
Programs
-
Maple
P := (n,k) -> simplify(n*hypergeom([1-k,k+1],[1],-1)*hypergeom([1-n,n+1],[2],-1)): seq(seq(4*(n*k)*(P(n,k)+P(k,n))/(n+k),k=1..n),n=1..7); # Peter Luschny, May 08 2016
-
Mathematica
Clear["Global`*"];(*Wigner-Smith Covariance*) P[k_] := Sum[Binomial[k - 1, j] Binomial[k + j, j], {j, 0, k - 1}] Q[k_] := Sum[Binomial[k, j + 1] Binomial[k + j, j], {j, 0, k - 1}] a[k1_, k2_] := 4 (k1 k2)/(k1 + k2) (P[k1] Q[k2] + P[k2] Q[k1]) L = 10; Table[a[k, l], {k, 1, L}, {l, 1, k}]
Formula
G.f.: ((x*y)/(x-y)^2)*((x*y-3(x+y)+1)/(sqrt(x^2-6x+1)*sqrt(y^2-6y+1))-1).
T(n,1)/4 = A050151(n) for n>=1. - Peter Luschny, May 08 2016
Comments