cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272947 Number of factors Fibonacci(i) > 1 of A160009(n+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 4, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 4, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 4, 4, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Clark Kimberling, May 13 2016

Keywords

Examples

			A160009(15) = 30 = 2*3*5, so that a(15) = 3.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)