cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272975 Numbers that are congruent to {0,7} mod 12.

Original entry on oeis.org

0, 7, 12, 19, 24, 31, 36, 43, 48, 55, 60, 67, 72, 79, 84, 91, 96, 103, 108, 115, 120, 127, 132, 139, 144, 151, 156, 163, 168, 175, 180, 187, 192, 199, 204, 211, 216, 223, 228, 235, 240, 247, 252, 259, 264, 271, 276, 283, 288, 295, 300, 307, 312, 319, 324
Offset: 1

Views

Author

Wesley Ivan Hurt, May 30 2016

Keywords

Comments

Numbers that are not congruent to {1, 2, 3, 4, 5, 6, 8, 9, 10, 11} mod 12.
Bisection of A083032.

Crossrefs

Programs

  • Magma
    [n : n in [0..400] | n mod 12 in [0, 7]];
    
  • Maple
    A272975:=n->(12*n-11+(-1)^n)/2: seq(A272975(n), n=1..100);
  • Mathematica
    Table[(12n - 11 + (-1)^n)/2, {n, 80}]
  • PARI
    concat(0, Vec(x^2*(7+5*x)/((x-1)^2*(x+1)) + O(x^99))) \\ Altug Alkan, May 31 2016

Formula

G.f.: x^2*(7+5*x) / ((x-1)^2*(x+1)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = (12*n - 11 + (-1)^n)/2.
a(2k) = A017605(k-1) k>0, a(2k-1) = A008594(k-1) k>0, a(2k)-a(2k-1) = 7.
a(n)-a(-n) = A008594(n) for n>0.
Sum_{i=1..n} a(2*i) = A049453(n) for n>0.
Sum_{i=1..n} a(2*i-1) = A049598(n-1) for n>0.
E.g.f.: 5 + ((12*x - 11)*exp(x) + exp(-x))/2. - David Lovler, Sep 04 2022
Sum_{n>=2} (-1)^n/a(n) = log(2)/4 + log(3)/8 - ((sqrt(3)-1)*Pi + 2*(sqrt(3)+3)*log(sqrt(3)+2))/(24*(sqrt(3)+1)). - Amiram Eldar, Sep 17 2023