A273059 Positions of 1's in A274640: Greedy Queens on a spiral. Equivalently, positions of 0's in A274641.
0, 9, 13, 17, 21, 82, 92, 102, 112, 228, 244, 260, 276, 445, 467, 489, 511, 630, 656, 682, 708, 967, 999, 1031, 1063, 1377, 1415, 1453, 1491, 1858, 1902, 1946, 1990, 2411, 2461, 2511, 2561, 3037, 3093, 3149, 3205, 3734, 3796, 3858, 3920, 4239, 4305, 4371, 4437, 5056, 5128, 5200, 5272, 5946
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..30288 (First 101 terms from Zak Seidov)
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Alois P. Heinz, Maple program for A273059
- Alois P. Heinz, Positions of first 1409 1's in plane of A274640 (Equivalently, positions of first 1409 0's in plane of A274641.)
- Zak Seidov, Graph of first differences of A273059.
- Zak Seidov, Spiral A274640 with ones shown.
- N. J. A. Sloane, For each of the first 1409 0's in A274641, list [n, x(n), y(n)].
Crossrefs
Programs
-
Maple
# see link above
-
Mathematica
fx[n_] := fx[n] = If[n == 1, 0, fx[n - 1] + Sin[#*Pi/2]& @ Mod[Floor[Sqrt[ 4*(n - 2) + 1]], 4]]; fy[n_] := fy[n] = If[n == 1, 0, fy[n - 1] - Cos[k*Pi/2]& @ Mod[Floor[Sqrt[ 4*(n - 2) + 1]], 4]]; b[, ] = 0; a[n_] := Module[{x, y, s, i, t, m}, {x, y} = {fx[n + 1], fy[n + 1]}; If[b[x, y] > 0, b[x, y], s = {}; For[i=1, True, i++, t = b[x+i, y+i]; If[t>0, s = Union[s, {t}], Break[]]]; For[i=1, True, i++, t = b[x-i, y-i]; If[t>0, s = Union[s, {t}], Break[]]]; For[i=1, True, i++, t = b[x+i, y-i]; If[t>0, s = Union[s, {t}], Break[]]]; For[i=1, True, i++, t = b[x-i, y+i]; If[t>0, s = Union[s, {t}], Break[]]]; For[i=1, True, i++, t = b[x+i, y]; If[t > 0, s = Union[s, {t}], Break[]]]; For[i=1, True, i++, t = b[x-i, y]; If[t > 0, s = Union[s, {t}], Break[]]]; For[i=1, True, i++, t = b[x, y+i]; If[t > 0, s = Union[s, {t}], Break[]]]; For[i=1, True, i++, t = b[x, y-i]; If[t > 0, s = Union[s, {t}], Break[]]]; m = 1; While[MemberQ[s, m], m++]; b[x, y] = m]]; Flatten[Position[a /@ Range[0, 10^4], 1]] - 1 (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)
Formula
A274640(a(n)) = 1 (this is simply a restatement of the definition).
Extensions
Offset changed to 0 by N. J. A. Sloane, Aug 31 2016
Comments