A273065 Decimal expansion of the negative reciprocal of the real root of x^3 - 2x + 2.
5, 6, 5, 1, 9, 7, 7, 1, 7, 3, 8, 3, 6, 3, 9, 3, 9, 6, 4, 3, 7, 5, 2, 8, 0, 1, 3, 2, 4, 7, 0, 3, 0, 8, 1, 6, 0, 9, 8, 4, 8, 3, 9, 7, 6, 7, 5, 9, 5, 5, 3, 8, 2, 7, 5, 5, 5, 4, 8, 3, 8, 1, 0, 9, 4, 8, 4, 1, 1, 2, 0, 3, 3, 0, 1, 5, 7, 2, 3, 9, 4, 7, 1, 3, 3, 3, 5, 8, 7, 7, 7, 3, 9, 7, 0, 1, 1, 2, 3, 8, 4, 1, 1, 9, 0
Offset: 0
Examples
0.565197717383639396437528013247030816098483976759553827555483810948411203...
Programs
-
Mathematica
First[RealDigits[1/x/.N[First[Solve[x^3-2x+2==0,x]],105]]] (* Stefano Spezia, Sep 15 2022 *)
-
PARI
default(realprecision, 200); -1/solve(x = -1.8, -1.7, x^3 - 2*x + 2)
Formula
Equals 1/A273066.
From Wolfdieter Lang, Sep 15 2022: (Start)
Equals ((23/4 + (3/4)*sqrt(57))^(1/3) + (23/4 + (3/4)*sqrt(57))^(-1/3) - 1)/3.
Equals ((23/4 + (3/4)*sqrt(57))^(1/3) + (23/4 - (3/4)*sqrt(57))^(1/3) - 1)/3.
Equals (2*cosh((1/3)*arccosh(23/4)) - 1)/3. (End)
Comments