cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A273066 Decimal expansion of the real root of x^3 - 2x + 2, negated.

Original entry on oeis.org

1, 7, 6, 9, 2, 9, 2, 3, 5, 4, 2, 3, 8, 6, 3, 1, 4, 1, 5, 2, 4, 0, 4, 0, 9, 4, 6, 4, 3, 3, 5, 0, 3, 3, 4, 9, 2, 6, 7, 0, 5, 5, 3, 0, 4, 5, 8, 9, 8, 8, 5, 7, 0, 0, 4, 2, 3, 3, 1, 0, 6, 1, 3, 0, 4, 0, 2, 6, 7, 3, 8, 1, 7, 3, 5, 0, 6, 6, 8, 3, 2, 9, 0, 6, 8, 7, 4, 1, 2, 2, 1, 4, 9, 4, 4, 5, 4, 8, 1, 8, 1, 2, 7, 1, 6
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2016

Keywords

Comments

The roots of x^3 + A273065*x^2 - A273066*x + A273067 are A273065, -A273066, and A273067. The only other real, cubic, monic polynomial with nonzero constant term and equal coefficients and roots when ignoring the leading coefficient is x^3 + x^2 - x - 1 (per the Math Overflow link).
The other two roots of x^3 - 2*x - 2 are w1*(1 + (1/9)*sqrt(57))^(1/3) + w2*(1 - (1/9)*sqrt(57))^(1/3) = -0.88464617... + 0.58974280...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1. Using hyperbolic functions this is -(1/3)*sqrt(6)*(cosh((1/3)*arccosh((3/4)*sqrt(6))) - sqrt(3)*sinh((1/3)*arccosh((3/4)*sqrt(6)))*i) and its complex conjugate. - Wolfdieter Lang, Sep 13 2022

Examples

			1.7692923542386314152404094643350334926705530458988570042331061304026738...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Root[x^3-2x+2,1],10,120][[1]] (* Harvey P. Dale, May 25 2022 *)
  • PARI
    default(realprecision, 200);
    -solve(x = -1.8, -1.7, x^3 - 2*x + 2)

Formula

Equals ((9-sqrt(57))^(1/3))/(3^(2/3)) + 2/((3(9-sqrt(57)))^(1/3)) (from Wolfram Alpha).
From Wolfdieter Lang, Sep 13 2022: (Start)
Equals (1 + (1/9)*sqrt(57))^(1/3) + (2/3)*(1 + (1/9)*sqrt(57))^(-1/3) [compare with the above formula which uses the negative sqrt(57)].
Equals (1 + (1/9)*sqrt(57))^(1/3) + (1 - (1/9)*sqrt(57))^(1/3).
Equals (2/3)*sqrt(6)*cosh((1/3)*arccosh((3/4)*sqrt(6))). (End)

A376943 G.f.: Sum_{k>=0} 2^k * x^(k*(k+1)) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

1, 0, 2, 2, 0, 0, 4, 4, 4, 4, 0, 0, 8, 8, 8, 16, 8, 8, 8, 0, 16, 16, 16, 32, 32, 32, 32, 32, 16, 16, 48, 32, 32, 64, 64, 96, 96, 96, 96, 96, 96, 64, 128, 96, 96, 160, 128, 192, 256, 256, 256, 320, 320, 320, 320, 256, 384, 384, 320, 384, 384, 448, 576, 704, 640, 768, 896
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2024

Keywords

Comments

In general, if d >= 1, b > 0 and g.f. = Sum_{k>=0} d^k * x^(b*k^2 + c*k) * Product_{j=1..k} (1 + x^j), then a(n) ~ r^c * (1+r) * exp(sqrt((2*log(d)^2 + 8*b*log(d)*log(r) + 4*b*(2*b+1)*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((r + 2*b*(1+r))*n)), where r is the smallest positive real root of the equation d*r^(2*b)*(1+r) = 1.

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[2^k * x^(k*(k+1)) * Product[1+x^j, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 80; p = 1; s = 1; Do[p = Normal[Series[2*p*(1 + x^k) * x^(2*k), {x, 0, nmax}]]; s += p; , {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ r * (1+r) * exp(sqrt((2*log(2)^2 + 8*log(2)*log(r) + 12*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((3*r + 2)*n)), where r = ((46 - 6*sqrt(57))^(1/3) + (46 + 6*sqrt(57))^(1/3) - 2)/6 is the real root of the equation 2*r^2*(1+r) = 1 (A273065).

A376945 G.f.: Sum_{k>=0} 2^k * x^(k^2) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

1, 2, 2, 0, 4, 4, 4, 4, 0, 8, 8, 8, 16, 8, 8, 8, 16, 16, 16, 32, 32, 32, 32, 32, 16, 48, 48, 32, 64, 64, 96, 96, 96, 96, 96, 96, 128, 128, 96, 160, 160, 192, 256, 256, 256, 320, 320, 320, 320, 384, 384, 384, 448, 384, 512, 576, 704, 704, 768, 896, 896, 1024, 1024, 1024
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[2^k * x^(k^2) * Product[1+x^j, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 80; p = 1; s = 1; Do[p = Normal[Series[2*p*(1 + x^k) * x^(2*k - 1), {x, 0, nmax}]]; s += p; , {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ (1+r) * exp(sqrt((2*log(2)^2 + 8*log(2)*log(r) + 12*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((3*r + 2)*n)), where r = ((46 - 6*sqrt(57))^(1/3) + (46 + 6*sqrt(57))^(1/3) - 2)/6 is the real root of the equation 2*r^2*(1+r) = 1 (A273065).

A273067 Decimal expansion of the constant term, which is also a root, of the cubic polynomial below.

Original entry on oeis.org

6, 3, 8, 8, 9, 6, 9, 1, 9, 4, 7, 1, 3, 5, 2, 6, 2, 2, 3, 6, 5, 3, 5, 3, 4, 3, 7, 8, 4, 0, 9, 7, 1, 8, 6, 0, 4, 7, 3, 5, 8, 5, 0, 9, 2, 3, 7, 9, 7, 4, 9, 3, 4, 9, 1, 2, 2, 1, 3, 8, 5, 0, 8, 5, 0, 5, 8, 5, 1, 4, 1, 0, 7, 4, 7, 5, 2, 3, 5, 3, 9, 6, 4, 2, 0, 6, 9, 4, 6, 6, 0, 1, 5, 0, 5, 2, 5, 7, 0, 4, 4, 4, 7, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, May 15 2016

Keywords

Comments

The roots of x^3 + A273065*x^2 - A273066*x + A273067 are A273065, -A273066, and A273067. See A273066, the main entry.

Examples

			0.638896919471352622365353437840971860473585092379749349122138508505851410...
		

Crossrefs

Programs

Formula

A357109 Decimal expansion of the real root of 2*x^3 - 2*x^2 - 1.

Original entry on oeis.org

1, 2, 9, 7, 1, 5, 6, 5, 0, 8, 1, 7, 7, 4, 2, 4, 3, 7, 2, 4, 6, 7, 8, 3, 0, 2, 2, 9, 8, 3, 7, 3, 1, 9, 5, 5, 5, 5, 3, 8, 0, 5, 5, 8, 1, 3, 7, 0, 3, 9, 6, 8, 2, 2, 8, 3, 6, 1, 5, 9, 4, 4, 3, 0, 8, 8, 4, 3, 8, 3, 9, 1, 4, 9, 5, 7, 0
Offset: 1

Views

Author

Wolfdieter Lang, Sep 29 2022

Keywords

Comments

This equals r0 + 1/3 where r0 is the real root of y^3 - (1/3)*y - 31/54.
The other roots of 2*x^3 - 2*x^2 - 1 are (w1*((31 + 3*sqrt(105))/4)^(1/3) + w2*((31 - 3*sqrt(105))/4)^(1/3))/3 = -0.4819115874... + 0.6028125753...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1.
Using hyperbolic functions these roots are (-cosh((1/3)*arccosh(31/4)) + sqrt(3)*sinh((1/3)*arccosh(31/4))*i)/3, and its complex conjugate.

Examples

			1.29715650817742437246783022983731955553805581370396822836159443088438391495...
		

Crossrefs

Cf. A273065.

Programs

  • Mathematica
    RealDigits[x /. FindRoot[2*x^3 - 2*x^2 - 1, {x, 1}, WorkingPrecision -> 100]][[1]] (* Amiram Eldar, Sep 29 2022 *)
  • PARI
    polrootsreal(2*x^3 - 2*x^2 - 1)[1] \\ Charles R Greathouse IV, Feb 11 2025

Formula

r = (((31 + 3*sqrt(105))/4)^(1/3) + ((31 + 3*sqrt(105))/4)^(-1/3) + 1)/3.
r = (((31 + 3*sqrt(105))/4)^(1/3) + ((31 - 3*sqrt(105))/4)^(1/3) + 1)/3.
r = (2*cosh((1/3)*arccosh(31/4))+1)/3.

A356411 Sum of powers of roots of x^3 - x^2 - x - 3.

Original entry on oeis.org

3, 1, 3, 13, 19, 41, 99, 197, 419, 913, 1923, 4093, 8755, 18617, 39651, 84533, 180035, 383521, 817155, 1740781, 3708499, 7900745, 16831587, 35857829, 76391651, 162744241, 346709379, 738628573, 1573570675, 3352327385, 7141783779
Offset: 0

Views

Author

Greg Dresden, Aug 05 2022

Keywords

Comments

a(n) is the sum of the n-th powers of the three roots of x^3 - x^2 - x - 3. These roots are c1 = 2.130395..., c2 = -0.5651977... - i*1.0434274..., and c3 = -0.5651977... + i*1.0434274..., and so a(n) = c1^n + c2^n + c3^n. The real parts of c2 and c3 are A273065.
a(n) can also be determined by Vieta's formulas and Newton's identities. For example, a(3) by definition is c1^3 + c2^3 + c3^3, and from Newton's identities this equals e1^3 - 3*e1*e2 + 3*e3 for e1, e2, e3 the elementary symmetric polynomials of x^3 - x^2 - x - 3. From Vieta's formulas we have e1 = 1, e2 = -1, and e3 = 3, giving us e1^3 - 3*e1*e2 + 3*e3 = 1 + 3 + 9 = 13, as expected.

Examples

			For n=3, a(3) = (2.130395...)^3 + (-0.5651977... - i*1.0434274...)^3 + (-0.5651977... + i*1.0434274...)^3 = 13.
		

Crossrefs

Cf. A103143, A123102, A247594, A356463, A273065 (Re c2,c3).

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 3}, {3, 1, 3}, 40]
  • PARI
    polsym(x^3 - x^2 - x - 3, 35) \\ Joerg Arndt, Aug 11 2022

Formula

a(n) = a(n-1) + a(n-2) + 3*a(n-3) with a(0)=3, a(1)=1, a(2) = 3.
G.f.: (3 - 2*x - x^2)/(1 - x - x^2 - 3*x^3).
Showing 1-6 of 6 results.