A273102 Difference table of the divisors of the positive integers.
1, 1, 2, 1, 1, 3, 2, 1, 2, 4, 1, 2, 1, 1, 5, 4, 1, 2, 3, 6, 1, 1, 3, 0, 2, 2, 1, 7, 6, 1, 2, 4, 8, 1, 2, 4, 1, 2, 1, 1, 3, 9, 2, 6, 4, 1, 2, 5, 10, 1, 3, 5, 2, 2, 0, 1, 11, 10, 1, 2, 3, 4, 6, 12, 1, 1, 1, 2, 6, 0, 0, 1, 4, 0, 1, 3, 1, 2, 1, 1, 13, 12, 1, 2, 7, 14, 1, 5, 7, 4, 2, -2, 1, 3, 5, 15, 2, 2, 10, 0, 8, 8
Offset: 1
Examples
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, so the difference triangle of the divisors of 18 is 1 . 2 . 3 . 6 . 9 . 18 1 . 1 . 3 . 3 . 9 0 . 2 . 0 . 6 2 .-2 . 6 -4 . 8 12 and the 18th slice is 1, 2, 3, 6, 9, 18; 1, 1, 3, 3, 9; 0, 2, 0, 6; 2,-2, 6; -4, 8; 12; The tetrahedron begins: 1; 1, 2; 1; 1, 3; 2; 1, 2, 4; 1, 2; 1; ... This is also an irregular triangle T(n,r) read by rows in which row n lists the difference triangle of the divisors of n flattened. Row lengths are the terms of A184389. Row sums give A273103. Triangle begins: 1; 1, 2, 1; 1, 3, 2; 1, 2, 4, 1, 2, 1; ...
Programs
-
Mathematica
Table[Drop[FixedPointList[Differences, Divisors@ n], -2], {n, 15}] // Flatten (* Michael De Vlieger, May 16 2016 *)
-
Sage
def A273102_DTD(n): # DTD = Difference Table of Divisors D = divisors(n) T = matrix(ZZ, len(D)) for (m, d) in enumerate(D): T[0, m] = d for k in range(m-1, -1, -1) : T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k] return [T.row(k)[:len(D)-k] for k in range(len(D))] # Keeps the rows of the DTD, for instance # A273102_DTD(18)[1] = 1,1,3,3,9 (see the example above). for n in range(1,19): print(A273102_DTD(n)) # Peter Luschny, May 18 2016
Comments