A273104 Absolute difference table of the divisors of the positive integers.
1, 1, 2, 1, 1, 3, 2, 1, 2, 4, 1, 2, 1, 1, 5, 4, 1, 2, 3, 6, 1, 1, 3, 0, 2, 2, 1, 7, 6, 1, 2, 4, 8, 1, 2, 4, 1, 2, 1, 1, 3, 9, 2, 6, 4, 1, 2, 5, 10, 1, 3, 5, 2, 2, 0, 1, 11, 10, 1, 2, 3, 4, 6, 12, 1, 1, 1, 2, 6, 0, 0, 1, 4, 0, 1, 3, 1, 2, 1, 1, 13, 12, 1, 2, 7, 14, 1, 5, 7, 4, 2, 2, 1, 3, 5, 15, 2, 2, 10, 0, 8, 8
Offset: 1
Examples
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, so the absolute difference triangle of the divisors of 18 is 1 . 2 . 3 . 6 . 9 . 18 . 1 . 1 . 3 . 3 . 9 . . 0 . 2 . 0 . 6 . . . 2 . 2 . 6 . . . . 0 . 4 . . . . . 4 and the 18th slice is 1, 2, 3, 6, 9, 18; 1, 1, 3, 3, 9; 0, 2, 0, 6; 2, 2, 6; 0, 4; 4; The tetrahedron begins: 1; 1, 2; 1; 1, 3; 2; 1, 2, 4; 1, 2; 1; ... This is also an irregular triangle T(n,r) read by rows in which row n lists the absolute difference triangle of the divisors of n flattened. Row lengths are the terms of A184389. Row sums give A187215. Triangle begins: 1; 1, 2, 1; 1, 3, 2; 1, 2, 4, 1, 2, 1; ...
Programs
-
Mathematica
Table[Drop[FixedPointList[Abs@ Differences@ # &, Divisors@ n], -2], {n, 15}] // Flatten (* Michael De Vlieger, May 16 2016 *)
Comments