A273102
Difference table of the divisors of the positive integers.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 2, 1, 2, 4, 1, 2, 1, 1, 5, 4, 1, 2, 3, 6, 1, 1, 3, 0, 2, 2, 1, 7, 6, 1, 2, 4, 8, 1, 2, 4, 1, 2, 1, 1, 3, 9, 2, 6, 4, 1, 2, 5, 10, 1, 3, 5, 2, 2, 0, 1, 11, 10, 1, 2, 3, 4, 6, 12, 1, 1, 1, 2, 6, 0, 0, 1, 4, 0, 1, 3, 1, 2, 1, 1, 13, 12, 1, 2, 7, 14, 1, 5, 7, 4, 2, -2, 1, 3, 5, 15, 2, 2, 10, 0, 8, 8
Offset: 1
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, so the difference triangle of the divisors of 18 is
1 . 2 . 3 . 6 . 9 . 18
1 . 1 . 3 . 3 . 9
0 . 2 . 0 . 6
2 .-2 . 6
-4 . 8
12
and the 18th slice is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2,-2, 6;
-4, 8;
12;
The tetrahedron begins:
1;
1, 2;
1;
1, 3;
2;
1, 2, 4;
1, 2;
1;
...
This is also an irregular triangle T(n,r) read by rows in which row n lists the difference triangle of the divisors of n flattened. Row lengths are the terms of A184389. Row sums give A273103.
Triangle begins:
1;
1, 2, 1;
1, 3, 2;
1, 2, 4, 1, 2, 1;
...
-
Table[Drop[FixedPointList[Differences, Divisors@ n], -2], {n, 15}] // Flatten (* Michael De Vlieger, May 16 2016 *)
-
def A273102_DTD(n): # DTD = Difference Table of Divisors
D = divisors(n)
T = matrix(ZZ, len(D))
for (m, d) in enumerate(D):
T[0, m] = d
for k in range(m-1, -1, -1) :
T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
return [T.row(k)[:len(D)-k] for k in range(len(D))]
# Keeps the rows of the DTD, for instance
# A273102_DTD(18)[1] = 1,1,3,3,9 (see the example above).
for n in range(1,19): print(A273102_DTD(n)) # Peter Luschny, May 18 2016
A272121
Absolute difference table of the divisors of the positive integers (with every table read by antidiagonals downwards).
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 4, 2, 1, 1, 5, 4, 1, 2, 1, 3, 1, 0, 6, 3, 2, 2, 1, 7, 6, 1, 2, 1, 4, 2, 1, 8, 4, 2, 1, 1, 3, 2, 9, 6, 4, 1, 2, 1, 5, 3, 2, 10, 5, 2, 0, 1, 11, 10, 1, 2, 1, 3, 1, 0, 4, 1, 0, 0, 6, 2, 1, 1, 1, 12, 6, 4, 3, 2, 1, 1, 13, 12, 1, 2, 1, 7, 5, 4, 14, 7, 2, 2, 1, 3, 2, 5, 2, 0, 15, 10, 8, 8
Offset: 1
The tables of the first nine positive integers are
1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
1; 2; 1, 2; 4; 1, 1, 3; 6; 1, 2, 4; 2, 6;
1; 0, 2; 1, 2; 4;
2; 1;
For n = 18 the absolute difference table of the divisors of 18 is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, 2, 6;
0, 4;
4;
This table read by antidiagonals downwards gives the finite subsequence [1], [2, 1], [3, 1, 0], [6, 3, 2, 2], [9, 3, 0, 2, 0], [18, 9, 6, 6, 4, 4].
-
Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m, 1, -1}] &@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* Michael De Vlieger, Jun 26 2016 *)
A273132
Absolute difference table of the divisors of the positive integers (with every table read by antidiagonals upwards).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 4, 1, 4, 5, 1, 1, 2, 0, 1, 3, 2, 2, 3, 6, 1, 6, 7, 1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 3, 4, 6, 9, 1, 1, 2, 2, 3, 5, 0, 2, 5, 10, 1, 10, 11, 1, 1, 2, 0, 1, 3, 0, 0, 1, 4, 1, 1, 1, 2, 6, 1, 2, 3, 4, 6, 12, 1, 12, 13, 1, 1, 2, 4, 5, 7, 2, 2, 7, 14, 1, 2, 3, 0, 2, 5, 8, 8, 10, 15
Offset: 1
The tables of the first nine positive integers are
1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
1; 2; 1, 2; 4; 1, 1, 3; 6; 1, 2, 4; 2, 6;
1; 0, 2; 1, 2; 4;
2; 1;
For n = 18 the absolute difference table of the divisors of 18 is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, 2, 6;
0, 4;
4;
This table read by antidiagonals upwards gives the finite subsequence [1], [1, 2], [0, 1, 3], [2, 2, 3, 6], [0, 2, 0, 3, 9], [4, 4, 6, 6, 9, 18].
-
Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m}] &@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* Michael De Vlieger, Jun 26 2016 *)
A274531
Irregular triangle read by rows: T(n,k) = sum of the elements of the k-th row of the absolute difference table of the divisors of n.
Original entry on oeis.org
1, 3, 1, 4, 2, 7, 3, 1, 6, 4, 12, 5, 2, 2, 8, 6, 15, 7, 3, 1, 13, 8, 4, 18, 9, 4, 0, 12, 10, 28, 11, 5, 4, 3, 1, 14, 12, 24, 13, 6, 2, 24, 14, 8, 8, 31, 15, 7, 3, 1, 18, 16, 39, 17, 8, 10, 4, 4, 20, 18, 42, 19, 11, 4, 5, 1, 32, 20, 12, 8, 36, 21, 10, 6, 24, 22, 60, 23, 11, 10, 6, 5, 2, 2, 31, 24, 16, 42, 25, 12, 8
Offset: 1
Triangle begins:
1;
3, 1;
4, 2;
7, 3, 1;
6, 4;
12, 5, 2, 2;
8, 6;
15, 7, 3, 1;
13, 8, 4;
18, 9, 4, 0;
12, 10;
28, 11, 5, 4, 3, 1;
14, 12;
24, 13, 6, 2;
24, 14, 8, 8;
31, 15, 7, 3, 1;
18, 16;
39, 17, 8, 10, 4, 4;
20, 18;
42, 19, 11, 4, 5, 1;
32, 20, 12, 8;
36, 21, 10, 6;
24, 22;
60, 23, 11, 10, 6, 5, 2, 2;
31, 24, 16;
42, 25, 12, 8;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the absolute difference triangle of the divisors is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, 2, 6;
0, 4;
4;
The row sums give [39, 17, 8, 10, 4, 4] which is also the 18th row of the irregular triangle.
-
Map[Total, #, {2}] &@ Table[NestWhileList[Abs@ Differences@ # &, #, Length@ # > 1 &] &@ Divisors@ n, {n, 26}] // Flatten (* Michael De Vlieger, Jun 27 2016 *)
A274533
Irregular triangle read by rows: T(n,k) = sum of the elements of the k-th column of the absolute difference table of the divisors of n.
Original entry on oeis.org
1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 4, 5, 6, 6, 7, 7, 4, 6, 8, 8, 7, 9, 9, 4, 7, 10, 10, 11, 11, 4, 6, 8, 10, 12, 12, 13, 13, 8, 9, 14, 14, 11, 13, 15, 15, 5, 8, 12, 16, 16, 17, 17, 8, 11, 12, 15, 18, 18, 19, 19, 7, 10, 10, 15, 20, 20, 13, 17, 21, 21, 16, 13, 22, 22, 23, 23, 6, 7, 10, 12, 16, 20, 24, 24, 21, 25, 25
Offset: 1
Triangle begins:
1;
2, 2;
3, 3;
3, 4, 4;
5, 5;
4, 5, 6, 6;
7, 7;
4, 6, 8, 8;
7, 9, 9;
4, 7, 10, 10;
11, 11;
4, 6, 8, 10, 12, 12;
13, 13;
8, 9, 14, 14;
11, 13, 15, 15;
5, 8, 12, 16, 16;
17, 17;
8, 11, 12, 15, 18, 18;
19, 19;
7, 10, 10, 15, 20, 20;
13, 17, 21, 21;
16, 13, 22, 22;
23, 23;
6, 7, 10, 12, 16, 20, 24, 24;
21, 25, 25;
20, 15, 26, 26;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the absolute difference triangle of the divisors is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, 2, 6;
0, 4;
4;
The column sums give [8, 11, 12, 15, 18, 18] which is also the 18th row of the irregular triangle.
-
Table[Total /@ Table[#[[m - k + 1, -k]], {m, Length@ #, 1, -1}, {k, m}] &@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 25}] // Flatten (* Michael De Vlieger, Jun 29 2016 *)
Showing 1-5 of 5 results.
Comments