A273131 Numbers n such that the bottom entry of the difference table of the divisors of n divides n.
1, 2, 4, 6, 8, 12, 14, 16, 24, 32, 64, 128, 152, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 1
Keywords
Examples
For n = 14 the difference triangle of the divisors of 14 is 1 . 2 . 7 . 14 . 1 . 5 . 7 . . 4 . 2 . . .-2 The bottom entry is -2 and -2 divides 14, so 14 is in the sequence.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..40
Programs
-
Mathematica
Select[Range[10^6], Function[k, If[k == {0}, False, Divisible[#, First@ k]]]@ NestWhile[Differences, Divisors@ #, Length@ # > 1 &] &] (* Michael De Vlieger, May 17 2016 *)
-
PARI
isok(n) = {my(d = divisors(n)); my(nd = #d); my(vd = d); for (k=1, nd-1, vd = vector(#vd-1, j, vd[j+1] - vd[j]);); vd[1] && ((n % vd[1]) == 0);} \\ Michel Marcus, May 16 2016
-
PARI
is(n) = my(d=divisors(n),s=sum(i=1,#d,binomial(#d-1,i-1)*(-1)^i*d[i]));if(s!=0,n%s==0) \\ David A. Corneth, May 19 2016
-
Sage
def is_A273131(n): D = divisors(n) T = matrix(ZZ, len(D)) for m, d in enumerate(D): T[0, m] = d for k in range(m-1, -1, -1) : T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k] return T[len(D)-1, 0].divides(n) print([n for n in range(1, 6000) if is_A273131(n)]) # Peter Luschny, May 18 2016
Extensions
a(12) = 128 and a(14)-a(25) from Michel Marcus, May 16 2016
a(26)-a(28) from David A. Corneth, May 19 2016
a(29)-a(37) from Lars Blomberg, Oct 18 2016
Comments