cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273131 Numbers n such that the bottom entry of the difference table of the divisors of n divides n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 24, 32, 64, 128, 152, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 1

Views

Author

Omar E. Pol, May 16 2016

Keywords

Comments

All powers of 2 are in the sequence because the bottom entries of their difference triangles are always 1's.
Besides 6, 12, 14, 24 and 152, are there any other non-powers of 2 in this sequence? - David A. Corneth, May 19 2016

Examples

			For n = 14 the difference triangle of the divisors of 14 is
1 . 2 . 7 . 14
. 1 . 5 . 7
. . 4 . 2
. . .-2
The bottom entry is -2 and -2 divides 14, so 14 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Function[k, If[k == {0}, False, Divisible[#, First@ k]]]@ NestWhile[Differences, Divisors@ #, Length@ # > 1 &] &] (* Michael De Vlieger, May 17 2016 *)
  • PARI
    isok(n) = {my(d = divisors(n)); my(nd = #d); my(vd = d); for (k=1, nd-1, vd = vector(#vd-1, j, vd[j+1] - vd[j]);); vd[1] && ((n % vd[1]) == 0);} \\ Michel Marcus, May 16 2016
    
  • PARI
    is(n) = my(d=divisors(n),s=sum(i=1,#d,binomial(#d-1,i-1)*(-1)^i*d[i]));if(s!=0,n%s==0) \\ David A. Corneth, May 19 2016
    
  • Sage
    def is_A273131(n):
        D = divisors(n)
        T = matrix(ZZ, len(D))
        for m, d in enumerate(D):
            T[0, m] = d
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return T[len(D)-1, 0].divides(n)
    print([n for n in range(1, 6000) if is_A273131(n)])
    # Peter Luschny, May 18 2016

Extensions

a(12) = 128 and a(14)-a(25) from Michel Marcus, May 16 2016
a(26)-a(28) from David A. Corneth, May 19 2016
a(29)-a(37) from Lars Blomberg, Oct 18 2016