A273164 Irregular array read by rows: T(n, k) giving in row n the divisors of nonprime numbers that are 3 (mod 4).
1, 3, 5, 15, 1, 3, 9, 27, 1, 5, 7, 35, 1, 3, 13, 39, 1, 3, 17, 51, 1, 5, 11, 55, 1, 3, 7, 9, 21, 63, 1, 3, 5, 15, 25, 75, 1, 3, 29, 87, 1, 7, 13, 91, 1, 5, 19, 95, 1, 3, 9, 11, 33, 99, 1, 3, 37, 111, 1, 5, 23, 115, 1, 7, 17, 119, 1, 3, 41, 123, 1, 3, 5, 9, 15, 27, 45, 135, 1, 11, 13, 143, 1, 3, 7, 21, 49, 147, 1, 5, 31, 155
Offset: 1
Examples
The irregular array T(n, k) begins: n\k 1 2 3 4 5 6 7 8 ... 1: 1 3 5 15 2: 1 3 9 27 3: 1 5 7 35 4: 1 3 13 39 5: 1 3 17 51 6: 1 5 11 55 7: 1 3 7 9 21 63 8: 1 3 5 15 25 75 9: 1 3 29 87 10: 1 7 13 91 11: 1 5 19 95 12: 1 3 9 11 33 99 13: 1 3 37 111 14: 1 5 23 115 15: 1 7 17 119 16: 1 3 41 123 17: 1 3 5 9 15 27 45 135 18: 1 11 13 143 19: 1 3 7 21 49 147 20: 1 5 31 155 ... The irregular array modulo 4 gives (-1 for 3 (mod 4)): n\k 1 2 3 4 5 6 7 8 ... 1: 1 -1 1 -1 2: 1 -1 1 -1 3: 1 1 -1 -1 4: 1 -1 1 -1 5: 1 -1 1 -1 6: 1 1 -1 -1 7: 1 -1 1 -1 1 -1 8: 1 -1 1 -1 1 -1 9: 1 -1 1 -1 10: 1 -1 1 -1 11: 1 1 -1 -1 12: 1 -1 1 -1 1 -1 13: 1 -1 1 -1 14: 1 1 -1 -1 15: 1 -1 1 -1 16: 1 -1 1 -1 17: 1 -1 1 1 -1 -1 1 -1 18: 1 -1 1 -1 19: 1 -1 -1 1 1 -1 20: 1 1 -1 -1 ...
Programs
-
Mathematica
Divisors@ Select[Range@ 155, CompositeQ@ # && Mod[#, 4] == 3 &] // Flatten (* Michael De Vlieger, Aug 01 2016 *)
Formula
T(n, k) gives the k-th divisor of A091236(n) in increasing order.
Comments